Preview

LITHOSPHERE (Russia)

Advanced search

Pseudosymmetry and cation ordering in heterophyllosilicates. 2. Refinement of the crystal structure of Ca-bearing mineral of the perraultite series

https://doi.org/10.24930/1681-9004-2025-25-2-221-237

EDN: YIZYIC

Abstract

   Object of Study. The symmetry and the choice of the space group (sp. gr.) for the structures of perraultite and related minerals – bafertisite-like Mn/Fe-Ti heterophyllosilicates with ordered alkali and alkaline earth cations is still under discussion. In the present work, the crystal structure of the Ca-containing member of the perraultite series is studied.

   Materials and Methods. The mineral perraultite used in this research was collected from the Oktyabrsky alkaline massif (Northern Azov Sea region). The crystal structure of the sample was studied using single crystal X-ray diffraction analysis. The parameters of the monoclinic unit cell are: a = 10.7230(3) Å, b = 13.8313(4) Å, c = 20.8178(7) Å, β = 95.0348(3)°, V = 3075.638(15) Å3.

   Results. The crystal structure of perraultite was refined within two space groups, C2 and C2/m, using data sets for 5120 and 2948 independent reflections with I > 3σ(I), respectively. The final R-factor values were 4.66 % for the sp. gr. C2 and 4.84 % for sp. gr. C2/m. For the structural model refined using the sp. gr. C2 the crystal chemical formula is (Z = 2): A1(Ba) A2(Ba0.64K0.36)2 A3(K0.87Ba0.13) B1(Na0.70Ca0.30) B2(Na0.70Ca0.30) B3(Na0.90Ca0.10)2 [M1(Mn0.50Fe2+0.40Zn0.10) M2(Mn0.60Fe2+0.30Zn0.10) M3(Mn0.50Fe2+0.50) M4(Mn0.70Fe2+0.30) M5(Mn0.50Fe2+0.50) M6(Mn0.60Fe2+0.40) M7(Mn0.60Fe2+0.40) M8(Mn0.70Fe2+0.30) (OH)4]2 [Ti1(Ti0.91Nb0.09) Ti2(Ti0.91Nb0.09) Ti3(Ti0.77Nb0.13Zr0.10) Ti4(Ti0.91Nb0.09) (Si2O7)4O4F2]2, where square brackets denote the main structural fragments.

   Conclusions. The sp. gr. C2 is proposed as more suitable for describing the perrotite-type structure, since it allows better identification of the features of the occupancy of positions within the HOH modules. The studied mineral from the Oktyabrsky massif is a F-dominant analogue of perraultite, differing from the latter also by the presence of calcium, a high iron content and a low niobium content.

About the Authors

G. S. Ilyin
Federal Research Center “Kola Science Center RAS”
Russian Federation

Grigory S. Ilyin

Laboratory of Arctic Mineralogy and Material Sciences

184209; 14 Fersman st.; Apatity



N. V. Chukanov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS
Russian Federation

Nikita V. Chukanov

142432; 1 Academician Semenov av.; Chernogolovka



I. V. Pekov
Moscow State University
Russian Federation

Igor V. Pekov

Faculty of Geology

119991; 1 Leninskie Gory; Moscow



N. A. Yamnova
Moscow State University
Russian Federation

Natalia A. Yamnova

Faculty of Geology

119991; 1 Leninskie Gory; Moscow



R. K. Rastsvetaeva
Kurchatov Complex of Crystallography and Photonics, NRC Kurchatov Institute
Russian Federation

Ramiza K. Rastsvetaeva

199333; 59 Leninskii av.; Mosсow



V. O. Yapaskurt
Moscow State University
Russian Federation

Vasiliy O. Yapaskurt

Faculty of Geology

119991; 1 Leninskie Gory; Moscow



S. M. Aksenov
Federal Research Center “Kola Science Center RAS”; Kurchatov Complex of Crystallography and Photonics, NRC Kurchatov Institute
Russian Federation

Sergey M. Aksenov

Laboratory of Arctic Mineralogy and Material Sciences

184209; 14 Fersman st.; Apatity; 199333; 59 Leninskii av.; Mosсow



References

1. Aksenov S.M., Banaru D.A., Banaru A.M., Antonov A.A., Kabanova N.A., Kuznetsov A.N., Belokoneva E.L., Yamnova N.A., Deyneko D.V., Chervonaya N.A., Chuka nov N.V., Blatov V.A. (2025) Kurchatovite,CaMg[B<sub>2</sub>O<sub>5</sub>], structural family: Structural features, complexity of polytypes, DFT analysis and comparative crystal chemistry of pyroborates of divalent cations. J. Struct. Chem., 66(2), 140948.

2. Aksenov S.M., Charkin D.O., Banaru A.M., Banaru D.A., Volkov S.N., Deineko D.V., Kuznetsov A.N., Rastsvetaeva R.K., Chukanov N.V., Shkurskii B.B., Yamnova N.A. (2023) Modularity, Polytypism, Topology, and Complexity of Crystal Structures of Inorganic Compounds (Review). J. Struct. Chem., 64(10), 1797-2028.

3. Aksenov S.M., Ryanskaya A.D., Shchapova Y.V., Chukanov N.V., Vladykin N.V., Votyakov S.L., Rastsvetaeva R.K. (2021) Crystal chemistry of lamprophyllitegroup minerals from the Murun alkaline complex (Russia) and pegmatites of Rocky Boy and Gordon Butte (USA): Single crystal X-ray diffraction and Raman spectroscopy study. Acta Crystallogr. B, 77(2), 287-298.

4. Aksenov S.M., Zarubina E.S., Rastsvetaeva R.K., Chukanov N.V., Filina M.I. (2024) Refinement of the crystal structure of christofschäferite-(Ce) and the modular aspect of the chevkinite polysomatic series with the general formula of {A<sub>4</sub>B(T<sub>2</sub>O<sub>7</sub>)<sub>2</sub>}{C<sub>2</sub>D<sub>2</sub>O<sub>8</sub>}m (m = 1, 2). Lithosphere (Russia), 24(2), 264-283. (In Russ.)

5. Belokoneva E.L., Topnikova A.P., Aksenov S.M. (2015) Topolology–Symmetry Law of Structure of Natural Titanosilicate Micas and Related Heterophyllosilicates Based on the Extended OD Theory: Structure Prediction. Cryst. Rep., 60(1), 1-15.

6. Bosi F., Biagioni C., Oberti R. (2019a) On the chemical identification and classification of minerals. Minerals, 9, 591.

7. Bosi F., Hatert F., Hålenius U., Pasero M., Miyawaki R., Mills S. (2019b) On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions. Mineral. Mag., 83, 627-632.

8. Bosi F., Skogby H., Hålenius U., Ciriotti M.E., Mills S.J. (2022) Lowering R3m symmetry in Mg-Fe-tourmalines: The crystal structures of triclinic schorl and oxy-dravite, and the mineral luinaite-(OH) discredited. Minerals, 12(4), 430.

9. Cámara F., Sokolova E., Hawthorne F.C. (2016) From structure topology to chemical composition. XXII. Titanium silicates: Revision of the crystal structure of jinshajiangite, NaBaFe2+4Ti<sub>2</sub> (Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>O<sub>2</sub>(OH)2F, a Group-II TS-block mineral. Canad. Mineral., 54, 1187-1204.

10. Cámara F., Sokolova E., Nieto F. (2009) Cámaraite, Ba<sub>3</sub>NaTi<sub>4</sub>(Fe<sup>2+</sup>,Mn)<sub>8</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>4</sub> O<sub>4</sub>(OH,F)<sub>7</sub>. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineral. Mag., 73, 855-870.

11. Chao G.Y. (1991) Perraultite, a new hydrous Na-K-Ba-Mn-Ti-Nb silicate species from Mont Saint-Hilaire, Quebec. Canad. Mineral., 29, 355-358.

12. Christiansen C.C., Johnsen O. Makovicky E. (2003) Crystal chemistry of the rosenbuschitegroup. Canad. Mineral., 41, 1203-1224.

13. Christiansen C.C., Makovicky E., Johnsen O. (1999) Homology and typism in heterophyllosilicates: An alternative approach. Neues Jahrb. Mineral., Abh., 175, 153-189.

14. Chukanov N.V., Aksenov S.M., Kasatkin A.V., Škoda R., Nestola F., Nodari L., Ryanskaya A.D., Rastsvetaeva R.K. (2019) 3T polytype of an iron-rich oxyphlogopite from the Bartoy volcanic field, Transbaikalia: Mössbauer, infrared, Raman spectroscopy, and crystal structure. Phys. Chem. Miner., 46(10), 899-908.

15. Chukanov N.V., Moiseev M.M., Pekov I.V., Lazebnik K.A., Rastsvetaeva R.K., Zayakina N.V., Ferraris G., Ivaldi G. (2004) Nabalamprophyllite Ba (Na, Ba) {Na<sub>3</sub>Ti[Ti<sub>2</sub>O<sub>2</sub>Si<sub>4</sub>O<sub>14</sub>(OH,F)<sub>2</sub>}, a new layered lamprophyllite-group mineral from the alkaline-ultrabasic massifs Inagli and Kovdor, Russia. Zapiski VMO, 133(1), 59-72.

16. Dornberger‐Schiff K., Backhaus K., Ďurovič S. (1982) Polytypism of Micas: OD-Interpretation, Stacking Symbols, Symmetry Relations. Clays and Clay Minerals, 30(5), 364-374.

17. Eskova E.M., Dusmatov V.D., Rastsvetaeva R.K., Chukanov N.V., Voronkov A.A. (2003) Surkhobite (Ca,Na) (Ba,K)(Fe<sup>3+</sup>,Mn)<sub>4</sub>Ti<sub>2</sub>(Si<sub>4</sub>O<sub>14</sub>)O<sub>2</sub>(F,OH,O)<sub>3</sub>. The new mine ral (The Alai Ridge, Tadjkistan). Zapiski VMO, 132(2), 60-67. (In Russ.)

18. Ferraris G., Ivaldi G. (2002) Structural features of micas. Rev. Mineral. Geochem., 46(1), 117-153.

19. Hawthorne F.C., Ungaretti L., Oberti R. (1995) Site populations in minerals: Terminology and presentation of results of crystal-structure refinement. Canad. Mineral., 33, 907-911.

20. Holtstam D. (1997) Jinshajiangite from the Norra Kärr alkaline intrusion, Jönköping, Sweden. GFF, 120(4), 373-374.

21. Hong W., Fu P. (1981) Jinshajiangite, a new Ba-Mn-Fe-Ti-bearing silicate mineral. Acta Mineral. Sin., 1(1), 16-23. (In Chinese with English abstract)

22. Ilyin G.S., Chukanov N.V., Rastsvetaeva R.K., Aksenov S.M. (2025) Pseudosymmetry andcation ordering in heterophyllosilicates. 1.Refinement of the crystal structure of schüllerite Ba<sub>2</sub>Na(Mn,Ca)(Fe<sup>3+</sup>,Mg,Fe<sup>2+</sup>)<sub>2</sub> Ti<sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(O,F)<sub>4</sub>. Lithosphere (Russia), 25(2), 212-220. (In Russ.) doi: 10.24930/2500-302X-2025-25-2-212-220

23. Jin S., Xu H., Lee S., Fu P. (2018) Jinshajiangite: Structure, twinning and pseudosymmetry. Acta Cryst. B, 74, 525-336.

24. Johnsen O. (1996) TEM observations and X-ray powder data on lamprophyllite polytypes from Gardiner Complex, East Greenland. Neues Jahrb. Mineral., Monatsh., 407-417.

25. Krivovichev S.V. (2020) Feldspar polymorphs: diversity, complexity, stability. Zapiski RMO, 149(4), 16-66.

26. Krivovichev S.V., Armbruster T., Yakovenchuk V.N., Pakhomovsky Ya.A., Men’shikov Yu.P. (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2Ofrom the Lovozero alkaline massif, Kola peninsula, Russia. Eur. J. Mineral., 15, 711-718.

27. Li G., Xiong M., Shi N., Ma Z. (2011) A New Three-Dimensional Superstructure in Bafertisite. Acta Geolog. Sin., 85(5), 1028-1035.

28. Lykova I.S., Pekov I.V., Kononkova N.N., Shpachenko A.K. (2010) Jinshanjiangite and bafertisite from the Gremyakha-Vyrmes alkaline complex, Kola peninsula. Geol. Ore Dep., 52(8), 837-842 (translated from Zapiski RMO, 139(2), 73-79).

29. Moore P. (1971) Ericssonite and orthoericssonite. Two new members of the lamprophyllite group from Långban, Sweden. Lithos, 4, 137-145.

30. Mottana A., Murata T., Wu Z.Y. (1997) The local structure of Ca-Na pyroxenes. I. XANES study at the Na K-edge. Phys. Chem. Mineral., 24, 500-509.

31. Nespolo M., Ferraris G., Souvignier B. (2014) Effects of merohedric twinning on the diffraction pattern. Acta Crystallogr. A, 70(2), 106-125.

32. Pekov I.V., Belovitskaya Yu.V., Kartashov P.M., Chukanov N.V., Yamnova N.A., & Egorov-Tismenko Yu.K. (1999) The new data on perraultite (The Azov sea region). Zapiski VMO, 128(3), 112-120. (In Russ.)

33. Petříček V., Dušek M., Palatinus L. (2014) Crystallographic computing system JANA2006: General features. Z. Kristallogr., 229(5), 345-352.

34. Rastsvetaeva R.K., Chukanov N.V., Aksenov S.M. (2016) The crystal chemistry of lamprophyllite-related minerals : A review. Eur. J. Mineral., 28(5), 915-930.

35. Rastsvetaeva R.K., Rozenberg K.A., Chukanov N.V. (2008) Crystal structure of jinshajiangite from the Norra Kärr complex (Sweden). Crystallogr. Rep., 53(4), 553-556.

36. Rastsvetaeva R.K., Еskova E.M., Dusmatov V.D., Chukanov N.V., Schneider F. (2008) Surkhobite: revalidation and redefinition with the new formula, (Ba,K)<sub>2</sub>CaNa (Mn,Fe<sup>2+</sup>,Fe<sup>3+</sup>)<sub>8</sub>Ti<sub>4</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>4</sub>O<sub>4</sub>(F,OH,O)<sub>6</sub>. Eur. J. Mineral., 20, 289-295.

37. Sokolova E., Cámara F. (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral. Mag., 81, 1457-1484.

38. Sokolova E., Cámara F., Abdu Y. A., Hawthorne F. C., Horváth L., Pfenninger-Horváth E. (2015) Bobshannonite, Na<sub>2</sub>KBa(Mn,Na)<sub>8</sub>(Nb,Ti)<sub>4</sub>Si<sub>2</sub>O<sub>7</sub>)<sub>4</sub>O<sub>4</sub>(OH)<sub>4</sub> (O,F)<sub>2</sub>, a new TS-block mineral from Mont Saint-Hilaire, Québec, Canada: Description and crystal structure. Mineral. Mag., 79(7), 1791-1811.

39. Sokolova E., Cámara F., Hawthorne F.C. (2011) From structure topology to chemical composition. XI. Titanium sili cates: Crystal structures of innelite-1T and innelite-2M from the Inagli massif, Yakutia, Russia, and the crystal chemistry of innelite. Mineral. Mag., 75(4), 2495-2518.

40. Sokolova E., Cámara F., Hawthorne F.C., Abdu Y. (2009) From structure topology to chemical composition. VII. Titanium silicates: The crystal structure and crystal chemistry of jinshajiangite. Eur. J. Mineral., 21(4), 871-883.

41. Sokolova E., Day M.C., Hawthorne F.C., Agakhanov A.A., Cámara F., Uvarova Yu.A., Della Ventura G. (2021) From Structure Topology to Chemical Composition. XXIX. Revision of the Crystal Structure of Perraul tite, NaBaMn<sub>4</sub>Ti<sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>O<sub>2</sub>(OH)2F, a Seidozerite-Supergroup TS-Block Mineral from the Oktyabr’skii Massif, Ukraine, and Discreditation of Surkhobite. Canad. Mineral., 59(2), 365-379.

42. Sokolova E., Hawthorne F.C. (2008) From structure topology to chemical composition. IV. Titanium silicates: The orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. Can. Mineral., 46, 1469-1477.

43. Sokolova E., Hawthorne F.C., Cámara F., Della Ventura G., Uvarova Yu.A. (2019) From structure topology to chemical composition. XXVII. Revision of the crystal chemistry of the perraultite-type minerals of the seidozerite supergroup: Jinshajiangite, surkhobite, and bobshannonite. Canad. Mineral., 58(1), 19-43.

44. Stachowicz M., Welch M.D., Bagiński B., Kartashov P.M., Macdonald R., Woźniak K. (2019) Cation Ordering, Valence States, and Symmetry Breaking in the Crystal-Chemically Complex Mineral Chevkinite-(Ce): Re-crystallization, Transformation, and Metamict States in Chevkinite. Amer. Mineral., 104(10), 1481-1486.

45. Volkov S.N., Aksenov S.M., Charkin D.O., Banaru A.M., Banaru D.A., Vaitieva Yu.A., Krzhizhanovskaya M.G., Yamnova N.A., Kireev V.E., Gosteva A.N., Tsvetov N.S. Savchenko Y.E., Bubnova R.S. (2024) Preparation of novel silver borates by soft hydrothermal synthesis in sealed tubes: New representatives of larderellite and veatchite families. Solid State Sci., 148, 107414.

46. Yamnova N.A., Egorov-Tismenko Yu.K., Pekov I.V. (1998) Crystal structure of perraultite from the Coastal Region of the Sea of Azov. Crystallogr. Rep., 41, 401-410.

47. Yang H., Hircschmann M.M. (1995) Crystal structure of P2<sub>1</sub>/m ferromagnesian amphibole and the role of cation ordering and composition in the P2<sub>1</sub>/m-C2/m transition in cummingtonite. Amer. Mineral., 80, 916-922.

48. Yushkin N.P., Shafranovsky I.I., Yanulov K.P. (1987) The laws of symmetry in mineralogy. Leningrad, Nauka, 335 p. (In Russ.)


Review

For citations:


Ilyin G.S., Chukanov N.V., Pekov I.V., Yamnova N.A., Rastsvetaeva R.K., Yapaskurt V.O., Aksenov S.M. Pseudosymmetry and cation ordering in heterophyllosilicates. 2. Refinement of the crystal structure of Ca-bearing mineral of the perraultite series. LITHOSPHERE (Russia). 2025;25(2):221-237. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-221-237. EDN: YIZYIC

Views: 677


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)