Preview

LITHOSPHERE (Russia)

Advanced search

Pseudosymmetry and cation ordering in heterophyllosilicates. 1. Refinement of the crystal structure of schüllerite Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4

https://doi.org/10.24930/1681-9004-2025-25-2-212-220

EDN: YVUQHF

Abstract

   Research subject. Currently, the symmetry of schüllerite and the choice of space group (sp. gr.) in its structure are subjects of debate. In this work, a re-examination of the holotype sample of schüllerite was conducted.

   Materials and Methods. The mineral schüllerite was found in the Löhley basalt quarry (Eifel volcanic area, Germany). The crystal structure was studied using single-crystal X-ray analysis.

   Results. We refined the crystal structure of schüllerite within two space groups – acentric P1 and centrosymmetric P1 using data sets for 2496 and 1683 independent reflections with I > 3σ(I), respectively. The final R-factor values were 4.42 % in sp. gr. P1 and 4.51 % in sp. gr. P1 . The parameters of the triclinic unit cell are: a = 5.4055(3) Å, b = 7.0558(3) Å, c = 10.1945(6) Å, α = 99.838(4)°, β = 99.715(5)°, γ = 90.065(4)°, V = 377.43(4) Å3. The idealized formula is Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4.

   Conclusions. The acentric space group P1 is proposed as more suitable for describing the structure of schüllerite, as it allows for the identification of more existing differences in site occupancies and cation-anion bond lengths in HOH modules.

About the Authors

G. S. Ilyin
Federal Research Center “Kola Science Center RAS”
Russian Federation

Grigory S. Ilyin

184209; 10a Fersman st.; Apatity



N. V. Chukanov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS
Russian Federation

Nikita V. Chukanov

142432; 1 Academician Semenov av.; Chernogolovka



R. K. Rastsvetaeva
NRC Kurchatov Institute
Russian Federation

Ramiza K. Rastsvetaeva

123182; 1 Academician Kurchatov sq.; Mosсow



S. M. Aksenov
Federal Research Center “Kola Science Center RAS”
Russian Federation

Sergey M. Aksenov

184209; 10a Fersman st.; Apatity



References

1. Aksenov S.M., Ryanskaya A.D., Shchapova Yu.V., Chukanov N.V., Vladykin N.V., Votyakov S.L., Rastsvetaeva R.K. (2021) Crystal chemistry of lamprophyllitegroup minerals from the Murun alkaline complex (Russia) and pegmatites of Rocky Boy and Gordon Butte (USA): Single crystal X-ray diffraction and Raman spectroscopy study. Acta Cryst. B, 77, 287-298.

2. Aksenov S.M., Charkin D.O., Banaru A.M., Banaru D.A., Volkov S.N., Deineko D.V., Kuznetsov A.N., Rastsvetaeva R.K., Chukanov N.V., Shkurskii B.B., Yamnova N.A. (2023) Modularity, poly typism, topology, and complexity of crystal structures of inorganic compounds (Review). J. Struct. Chem., 64(10), 1797-2028.

3. Aksenov S.M., Zarubina E.S., Rastsvetaeva R.K., Chukanov N.V., Filina M.I. (2024) Refinement of the crystal structure of christofschäferite-(Ce) and the modular aspect of the chevkinite polysomatic series with the general formula of {A<sub>4</sub>B(T<sub>2</sub>O<sub>7</sub>)<sub>2</sub>}{C<sub>2</sub>D<sub>2</sub>O<sub>8</sub>}m (m = 1, 2). Lithosphere (Russia), 24(2), 264-283. (In Russ.)

4. Belokoneva E.L., David W.I.F, Forsyth J.B., Knight K.S. (1997a) Structural aspects of the 530 °C phase transition in LaBGeO<sub>5</sub>. J. Phys.: Condens. Matter., 9, 3503-3519.

5. Belokoneva E.L., David W.I.F., Forsyth J.B. (1998) Structures and phase transitions of PrBGeO<sub>5</sub> in the temperature range 20-800 degrees C. J. Phys.: Condens. Matter.,

6. 10, 9975-9989.

7. Belokoneva E.L., Knight K.S., David W.I.F, Mill B.V. (1997b) Structural phase transitions in germanate analogues of KTiOPO<sub>4</sub> investigated by high-resolution neutron powder diffraction. J. Phys.: Condens. Matter., 9, 3833-3851.

8. Belokoneva E.L., Topnikova A.P., Aksenov S.M. (2015) Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: Structure prediction. Crystallogr. Rep., 60(1), 5-20.

9. Belokoneva E.L., Yakubovich O.V., Tsirelson V.G., Urusov V.S. (1990) Refined crystal structure of KFeFPO<sub>4</sub>-structural analogue of KTiOPO<sub>4</sub>. Izv. USSR Academy of Sciences: Inorganic Materials, 26(3), 595-601.

10. Capillas C., Aroyo M.I., Perez-Mato J.M. (2005) Me thods for pseudosymmetry evaluation: A comparison between the atomic displacements and electron density approaches. Z. Kristallogr., 220(8), 691-699. doi: 10.1524/zkri.220.8.691.67076

11. Capillas C., Tasci E.S., de la Flor G., Orobengoa D., Perez-Mato J.M., Aroyo M.I. (2011) A new computer tool at the Bilbao Crystallographic Server to detect and characterize pseudosymmetry. Z. Kristallogr., 226(2), 186-196. doi: 10.1524/zkri.2011.1321

12. Christy A.G. (1995) Isosymmetric structural phase transitions: Phenomenology and examples. Acta Cryst. B, 51(5), 753-757. doi: 10.1107/s0108768195001728

13. Chukanov N.V., Rastsvetaeva R.K., Aksenov S.M., Britvin S.N., Virus A.A., Belakovskiy D.I., Pekov I.V., Ternes B. (2011) Schüllerite, Ba<sub>2</sub>Na(Mn,Ca)(Fe<sup>3+</sup>,Mg, Fe<sup>2+</sup>)<sub>2</sub>Ti<sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(O,F)<sub>4</sub>, a new mineral species from the Eifel volcanic district, Germany. Geol. Ore Depos., 53(8), 767-774.

14. Chuprunov E.V. (2015) Symmetry and pseudosymmetry of crystals. N. Novgorod, Lobachevsky State University, 658 p. (In Russ.)

15. de Wolff P.M. (1974) The Pseudo-Symmetry of modulated crystal structures. Acta Cryst. A, 30(6), 777-785. doi: 10.1107/s0567739474010710

16. Friedel G. (1913) Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. Comptes Rendus, 157, 1533-1536.

17. Hawthorne F.C., Ungaretti L., Oberti R. (1995) Site populations in minerals: Terminology and presentation of results of crystal-structure refinement. Canad. Mineral., 33, 907-911.

18. Jin S., Xu H., Lee S., Fu P. (2018) Jinshajiangite: Structure, twinning and pseudosymmetry. Acta Cryst. B, 74, 325-336.

19. Katkova M.R., Belokoneva E.L., Nosov S.S., Chuprunov E.V. (1998) On the pseudosymmetry of ferroelectric crystals in the KTP structural type. Bulletin of the Nizhny Novgorod University: Solid State Physics, (1), 59-62.

20. Nelyubina Y.V., Antipin M.Y., Cherepanov I.A., Lyssenko K.A. (2010) Pseudosymmetry as viewed using charge density analysis. Cryst. Eng. Comm., 12(1), 77-81. doi: 10.1039/b912147a

21. Nespolo M., Ferraris G. (2004) Applied geminography – symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry. Acta Crystallogr. A, 60(1), 89-95. doi: 10.1107/S0108767303025625

22. Nespolo M., Ozawa T., Kawasaki Y., Sugiyama K. (2012) Structural relation and pseudosymmetries in andorite homologous series. J. Mineral. Petrol. Sci., 107, 226-243.

23. Petříček V., Dušek M., Palatinus L. (2014) Crystallographic computing system JANA2006: General features. Z. Kristallogr., 229(5), 345-352.

24. Punin Yu.O., Shtukenberg A.G. (2004) Optical anomalies in crystals. St. Petersburg, Nauka, 263 p. (In Russ.)

25. Rastsvetaeva R.K., Aksenov S.M. (2011) Crystal chemistry of silicates with three-layer TOT and HOH modules of layered, chainlike, and mixed types. Crystallogr. Rep., 56(6), 910-934.

26. Rastsvetaeva R.K., Aksenov S.M., Chukanov N.V. (2011) Crystal structure of schüllerite, a new mineral of the heterophyllosilicate family. Dokl. Chemistry, 437(2), 90-94.

27. Rastsvetaeva R.K., Aksenov S.M., Verin I.A., Chukanov N.V., Lykova I.S. (2014) Iron-rich schüllerite from Kahlenberg (Eifel, Germany): Crystal structure and relation to lamprophyllitegroup minerals. Crystallogr. Rep., 59(6), 867-873.

28. Rastsvetaeva R.K., Chukanov N.V., Aksenov S.M. (2016) The crystal chemistry of lamprophyllite-related minerals : A review. Eur. J. Mineral., 28, 915-930.

29. Shi P.-P., Tang Y.-Y., Li P.-F., Liao W.-Q., Wang Z.-X., Ye Q., Xiong R.-G. (2016) Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev., 45(14), 3811-3827. doi: 10.1039/c5cs00308c

30. Sokolova E., Cámara F. (2017) The seidozerite supergroup of TS-block minerals: Nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral. Mag., 81(6), 1457-1484.

31. Sokolova E., Hawthorne F.C., Abdu Y.A. (2013) From structure topology to chemical composition. XV. Titanium silicates: Revision of the crystal structure and chemical formula of schüllerite, Na<sub>2</sub>Ba<sub>2</sub>Mg<sub>2</sub>Ti<sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>O<sub>2</sub>F<sub>2</sub>, from the Eifel volcanic region, Germany. Canad. Mineral., 51, 715-725.

32. Stachowicz M., Bagiński B., Welch M.D., Kartashov P.M., Macdonald R., Balcerzak J., Tyczkowski J., Woźniak K. (2019) Cation Ordering, Valence States, and Symmetry Breaking in the Crystal-Chemically Complex Mineral Chevkinite-(Ce): X-Ray Diffraction and Photoelectron Spectroscopy Studies and Mechanisms of Nb Enrichment. Amer. Mineral., 104(4), 595-602.

33. Stoger B., Weil M., Murugesian S., Kirchner K. (2016) Pseudo-symmetry analysis to unravel the secrets of twins – a case study with four diverse examples. Z. Kristallogr., 231(10), 601-622. doi: 10.1515/zkri-2016-1950

34. Thomas P.A., Mayo S.C., Watts B.E. (1992) Crystal structures of RbTiOAsO<sub>4</sub>, KTiO(P<sub>0.58</sub>,As<sub>0.42</sub>)O<sub>4</sub>, RbTiOPO<sub>4</sub> and (Rb<sub>0.465</sub>K<sub>0.535</sub>)TiOPO<sub>4</sub>, and analysis of pseudosymmetry in crystals of the KTiOPO<sub>4</sub> family. Acta Cryst. B, 48(4), 401-407. doi: 10.1107/s0108768192002465

35. Xu H., Jin S., Lee S., Brown P.E. (2023) Cation orde ring, twinning, and pseudo-symmetry in silicate garnet: The study of a birefringent garnet with orthorhombic structure. Amer. Mineral., 108(3), 572-583. doi: 10.2138/am-2022-8455

36. Zarubina E.S., Rastsvetaeva R.K., Rusakov V.S., Nikolaev A.G., Vagizov F.G., Bakhtin A.I., Varlamov D.A., Chukanov N.V., Ananiev S.A., Aksenov S.M. (2024) Crystal chemistry of minerals with spinel modules and new data on symmetry, passed and features distribution of cations in tashelgit CaMgFe<sup>2+</sup>Al<sub>9</sub>O<sub>16</sub>(OH). J. Struct. Chem. (In press). (In Russ.)

37. Zorky P.M. (1996) Symmetry, pseudosymmetry and hypersymmetry of organic crystals. J. Mol. Struct., 374(1-3), 9-28.


Review

For citations:


Ilyin G.S., Chukanov N.V., Rastsvetaeva R.K., Aksenov S.M. Pseudosymmetry and cation ordering in heterophyllosilicates. 1. Refinement of the crystal structure of schüllerite Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4. LITHOSPHERE (Russia). 2025;25(2):212-220. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-212-220. EDN: YVUQHF

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)