Preview

LITHOSPHERE (Russia)

Advanced search

Octahedral and tetrahedral patterns in structural mineralogy – nature’s answer to L. Pauling’s fifth rule

https://doi.org/10.24930/1681-9004-2025-25-2-196-211

EDN: YHDVSM

Abstract

   Research subject. Structures of minerals with filled octahedral, tetrahedral, and trigonal voids in anionic packages.

   Aim. Analysis of the correlation of L. Pauling's rule of parsimony with variety of minerals.

   Key points. Using the example of the interrelation between following crystal structures: olivine, norbergite, chondrodite, humite, clinohumite, СdI2, Mg(OH)2, rutile, brookite, anatase, spinel, diaspore, goethite, groutite, stenierite, ramsdellite, VO2, hollandite, todorokite, romanechite, corundum, karelianite, eskolaite, hematite, tetradymite, ilmenite, calcite, magnesite, siderite, rhodochrosite, dolomite, kutnohorite, ankerite, topaz, wurtzite, sphalerite, chalcopyrite, stannite, germanite, enargite, sulvanite, pentlandite, litharge, LiOH, cuprite, cooperite, chalcocite, BCl3, Na3As, covellite and domeykite, a variety of possible topological structures of crystal structures with the presence of various voids in a tightly packed motif of anions, which can be occupied by smaller cations, is demonstrated. Octahedral motifs of various stoichiometry of the ratio of ions forming the package to filled voids, tetrahedral motifs with layers of the same parity and different parity, anion-centered tetrahedral motifs, and trigonal motifs are analyzed.

   Conclusions. The explanation for the apparent contradiction between the observed topological diversity of polyhedral motifs and L. Pauling’s fifth rule is given.

About the Authors

N. N. Eremin
M.V. Lomonosov Moscow State University; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation

Nikolay N. Eremin

Geological Faculty

119991; 1А Lenin Hills; 119017; 35 Staromonetny lane; Moscow



T. A. Eremina
M.V. Lomonosov Moscow State University
Russian Federation

Tatiana A. Eremina

Geological Faculty

119991; 1А Lenin Hills; Moscow



O. A. Gurbanova
M.V. Lomonosov Moscow State University
Russian Federation

Olga A. Gurbanova

Geological Faculty

119991; 1А Lenin Hills; Moscow



References

1. Белов Н.В. (1947) Структура ионных кристаллов и металлических фаз. М.: Изд-во АН СССР, 237 с.

2. Белов Н.В. (1976) Очерки по структурной минералогии. М.: Недра, 344 с.

3. Борисов C.B., Подберезская Н.В. (1984) Стабильные катионные каркасы в структурах фторидов и оксидов. Новосибирск: Наука, 65 с.

4. Еремин Н.Н., Гурбанова О.А., Подображных А.Д., Ионидис Н.А., Шванская Л.В., Еремина Т.А. (2024) Важнейшие структурные типы в неорганической химии и минералогии: новые данные. Литосфера, 24(2), 214-225. doi: 10.24930/1681-9004-2024-24-2-214-225

5. Еремин Н.Н., Еремина Т.А. (2018) Неорганическая кристаллохимия. Кн. 1. М.: КДУ, 394 с.

6. Еремин Н.Н., Еремина Т.А., Марченко Е.И. (2020) Структурная химия и кристаллохимия : электронное издание сетевого распространения. М.: КДУ, Добросвет, 494 с.

7. Кривовичев С.В., Филатов С.К. (2001) Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: СПбГУ, 200 с.

8. Урусов В.С., Еремин Н.Н. (2010) Кристаллохимия. Краткий курс. М.: Изд-во МГУ, 256 с.

9. Урусов В.С. (2013) Симметрия-диссимметрия в эволюции мира: от рождения вселенной до развития жизни на Земле. М.: Либроком, 226 с.

10. Уэллс А. (1987) Структурная неорганическая химия. Т. 1. М.: Мир, 408 с.

11. Abe H., Satoh A., Nishida K. et al. (2006) Electrochemical immobilization of Cs in single-crystalline Synroc. J. Solid State Chem., 179, 1521-1524. doi: 10.1016/j.jssc.2006.02.005

12. Iskrina A.V., Bobrov A.V., Spivak A.V. (2022) Post-spinel phases in the Earth’s mantle. Geochem. Int., 60, 311-324. doi: 10.1134/S0016702922040024

13. Нawthorne F.C. (2006) Landmark papers: Structure topology. Mineralogical society of Great Britain and Ireland, 301 p.

14. Lima-de-Faria J. (2012) The close packing in the classification of minerals. Eur. J. Miner., 24, 163-169. doi: 10.1127/0935-1221/2011/0023-2159

15. Ma J., Fang Z., Yang X. et al. (2021) Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium. J. Mater. Sci., 56, 9644-9654. doi: 10.1007/s10853-021-05886-2

16. Pauling L. (1929) The principles determining the structure of complex ionic crystals. J. Amer. Chem. Soc., 51(4), 1010-1026.

17. Pierce J.W., Goodenough J.B. (1972) Structure of orthorhombic V<sub>0.95</sub> Cr<sub>0.05</sub>O<sub>2</sub>. Phys. Rev., B5, 4104-4111.

18. Tamada O., Yamamoto N. (1986) The crystal structure of a new manganese dioxide (Rb<sub>0.27</sub> MnO<sub>2</sub>) with a giant tunnel. Mineral. J., 13(3), 130-140. doi: 10.2465/minerj.13.130


Review

For citations:


Eremin N.N., Eremina T.A., Gurbanova O.A. Octahedral and tetrahedral patterns in structural mineralogy – nature’s answer to L. Pauling’s fifth rule. LITHOSPHERE (Russia). 2025;25(2):196-211. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-196-211. EDN: YHDVSM

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)