Preview

LITHOSPHERE (Russia)

Advanced search

Mineralogy and petrogenesis of intrusive rocks of the Kutuevsky Au-Cu-porphyry ore occurrence (Southern Urals)

https://doi.org/10.24930/2500-302X-2025-25-1-114-133

EDN: CDRSBY

Abstract

Research subject. Mineralogical, petrological and geochemical features and formation conditions of gabbro-diorites and diorites composing the ore-bearing intrusions of the Kutuevsky Au-Cu porphyry ore occurrence in the Main Uralian Fault zone (Southern Urals).

Materials and Methods. The content of rock-forming oxides was determined by the wet chemistry analysis, trace elements – by ICP-MS (ELAN 9000 mass spectrometer) and ICP-AES (ICPE-9000 atomic emission spectrometer). The study of the chemical composition of minerals was carried out using a Tescan Vega Compact scanning electron microscope with an Oxford Instruments Xplorer 15 energy-dispersive analyzer. P-T formation parameters were assessed using mineral geothermobarometers.

Results and conclusions. The rock-forming minerals of gabbro-diorites and diorites are plagioclase with primary composition close to andesine (An = 32.83–34.43%) and clinopyroxene, represented by augite (Wo43.9–44.0En45.2–45.5Fs10.6–10.8) and diopside (Wo45.2–47.9En42.1–44.8Fs9.2–10.3). Accessory minerals include zircon, magnetite, titanite, apatite, and titanomagnetite. Clinopyroxene is largely replaced by green hornblende (6.956–7.169 a.f.u. Si, 0.73–0.76 Mg/(Mg+Fe2+)) of unknown genetic nature. Clinopyroxene crystallization occurred at T = 1010–1072°C and P = 1.35–1.78 kbar. The intrusive rocks of the Kutuevsky ore occurrence and other porphyry occurrences of the MUF zone in the Southern Urals have similar petro-geochemical characteristics that correspond to igneous rocks formed at the early stages of development of ensimatic island arcs. They have a moderate potassium composition, normal alkalinity, calc-alkaline or transitional tholeiitic-calc-alkaline composition. Spinel peridotites of the lithospheric mantle, metasomatized by subduction fluids, are assumed to be the source of magmas for gabbro-diorites and diorites of the ore occurrence. Crust contamination processes also influenced the composition.

About the Author

S. E. Znamensky
Institute of Geology, UFRC RAS
Russian Federation

Sergey E. Znamensky

16/2 Karl Marx st., Ufa 450077



References

1. Andreev A.V., Girfanov M.M., Kulikov D.A., Migachev I.F., Minina O.V., Avilova O.V., Krasnoselskikh A.A., Starostin I.A., Cheremisin A.A. (2018) Ore areas with porphyry copper mineralization – a promising mineral resource base for copper in the Southern Urals. Otech. Geologiya, (4), 3-17. (In Russ.)

2. Aranovich L.Ya., Bortnikov N.S., Borisov A.A. (2020) Oceanic zircon as a petrogenetic indicator. Rus. Geol. Geophys., 61(5-6), 559-570 (translated from Geologiya i Geofizika, 61(5-6), 685-700).

3. Bogatikov O.A., Tsvetkov A.A. (1988) Magmatic evolution of island arcs. Moscow, Nauka Publ., 248 p. (In Russ.)

4. Castillo P.R., Janney P., Solidum R.U. (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol., 134(1), 33-51.

5. Di Vincenzo G., Rocchi S. (1999) Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: The Early Paleozoic Terra Nova intrusive complex, Antarctica Contrib. Mineral. Petrol., 137, 15-35. https://doi.org/10.1007/s004100050579

6. Ellam R.M. (1992) Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2), 153-156.

7. Féménias O., Mercier J., Nkono C., Diot H., Berza T., Tatu M., Demaiffe D. (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania). Amer. Miner., 91, 73-81.

8. Grabezhev A.I. (2014) Yubileinoye Cu-Au porphyry deposit (Southern Urals, Russia): SHRIMP-II U-Pb zircon age and isotope-geochemical features of ore-bearing granitoids. Dokl. RAN, 454(3), 315-318. (In Russ.)

9. Grabezhev A.I., Belgorodsky E.A. (1992) Productive granitoids and metasomatites of porphyry copper deposits. Ekaterinburg, Nauka Publ., 199 p. (In Russ.)

10. Grabezhev A.I., Shardakova G.Yu., Ronkin Y.L., Azovskova O.B. (2017) Systematization of U-Pb zircon ages of granitoids from the copper porphyry deposits on the Urals. Lithosphere (Russia), 17(5), 113-126. (In Russ.) https://doi.org/10.24930/1681-9004-2017-17-5-113-126

11. Kay S.M., Mpodozis C. (2001) Central Andean ore deposits linked to evolving shallow subduction system and thickening crust. GSA today, 11, 4-9.

12. Kosarev A.M., Puchkov V.N., Seravkin I.B. (2005) Petrological-geochemical features of the Early Devonian-Eifelian island-arc volcanics of the Magnitogorsk zone in a geodynamic context. Lithosphere (Russia), (4), 22-41. (In Russ.)

13. Kosarev A.M., Puchkov V.N., Seravkin I.B., Kholodnov V.V., Grabezhtv A.I., Ronkin Y.L. (2014) New data on the age and geodynamic position of copperporphyry mineralization in the Main Uralian Fault zone (Southern Urals). Dokl. Earth Sci., 495(1), 1317-1321. https://doi.org/10.1134/S1028334X1411004X

14. Krivtsov A.I. (1983) Geological basis for forecasting and searching for porphyry copper deposits. Moscow, Nedra Publ., 256 p. (In Russ.)

15. Leake B.E. (1978) Nomenclature of amphiboles. Amer. Miner., 63, 1023-1052.

16. MacLean W.H., Barrett T.J. (1993) Lithochemical techniques using immobile elements. J. Geochem. Explor., 48, 109-133.

17. Maslov V.A., Artyushkova O.V. (2010) Stratigraphy and correlation of Devonian deposits of the Magnitogorsk megazone of the Southern Urals. Ufa, DesignPolygraphService Publ., 288 p. (In Russ.)

18. McDonough W.F., Sun S. (1995) The composition of the Earth. Chem. Geol., 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4

19. Middlemost E.A.K. (1994) Naming materials in magma/igneous rock system. Earth Sci. Rev., 37, 215-224. https// doi:10.1016/0012-8252(94)90029-9

20. Miyashiro A. (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett., 19, 218-224. https//doi:10.1016/0012-821x(73)90118-0

21. Moore G., Carmichael I.S.E. (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol., 130, 304-319.

22. Morimoto N., Fabries J, Ginzburg A.K., Ross M., Seifert M.F.A., Zussman J.K., Aoki J.K., Gottardi G. (1988) Nomenclature of pyroxenes. Amer. Miner., 73, 1123-1133.

23. Neave D., Putirka K.D. (2017) A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Amer. Miner., 102, 777-794.

24. Pearce J.A. (2008) Geochemical f ingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

25. Pearce J.A. (2014) Immobile Element Fingerpriting of Ophiolites. Elements, 10, 101-108.

26. Plotinskaya O.Yu. (2023) Porphyry-epithermal systems of the Urals: Sources of matter, evolution and zoning. Abstract Cand. geol. and min. sci. diss. Moscow, IGEM RAN, 39 p. (In Russ.)

27. Plotinskaya O.Yu., Grabezhev A.I., Tessalina S., Seltmann R., Groznova E.O., Abramov S.S. (2017) Porphyry deposits of the Urals: Geological framework and metallogeny. Ore Geol. Rev., 85, 153-173. https://doi.org/10.1016/j.oregeorev.2016.07.002

28. Putirka K.D. (2008) Thermometers and Barometers for Volcanic Systems. Rev. Mineral. Geochem., 69, 61-120. https://doi.org/10.2138/rmg.2008.69.3

29. Putirka K.D. (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Amer. Miner., 101, 841-858. http://doi.org/10.2138/am-2016-5506

30. Putrica K.D., Busby C. (2007) The tectonic significance of high-K2O volcanism in the Sierra Nevada, California. Geology, 35(10), 923-926.

31. Putirka K.D., Mikaelian H., Ryerson F., Shaw H. (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Amer. Miner., 88, 1542-1554. https://doi.org/10.2138/am-2003-1017

32. Seravkin I.B., Kosarev A.M., Salikhov D.N., Znamensky S.E., Rodicheva Z.I., Rykus M.V., Snachev V.I. (1992) Volcanism of the Southern Urals. Moscow, Nauka Publ., 197 p. (In Russ.)

33. Shishakov V.B., Sergeeva N.E., Surin S.V. (1988) Voznesensk porphyry copper deposit in the Southern Urals. Geol. Rud. Mestorozhd., (2), 85-90. (In Russ.)

34. Shkolnik S.I., Reznitsky L.Z., Belichenko V.G., Barash I.G. (2009) Geochemistry, issues of petrogenesis and geodynamic position of metavolcanics of the Tunka terrane (Baikal-Khuvsgul region). Geol. Geofiz., 50(9), 10131024. (In Russ.)

35. Wang X., Hou T., Wang M., Zhang C., Zhang Z., Pan R., Marxer F., Zhang H. (2021) A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. Eur. J. Mineral., 33, 621-637. https://doi.org/10.5194/ejm-33-621-2021

36. White W.M., Klein E.M. (2014) Composition of the Oceanic Crust. Treatise on Geochemistry, Сh. 4.13, 457-496. http://doi.org/10.1016/B978-0-08-095975-7.00315-6

37. Winchester J.A., Floyd P.A. (1976) Geochemical magma type discrimination: Application to altered and metamorphosed igneous rock. Earth Planet. Sci. Lett., 28, 459-469.

38. Wu Z., Barosh P., Zhang Q., Wu J., Yang Y. (2018) A thickness Gauge for the lithosphere based on Ce/Yb and Sm/ Yb of mantle-derived magmatic rocks. Acta Geol. Sinica, 92(6), 2120-2135.

39. Znamensky S.E. (2021) Petrological and geochemical characteristic of the rocks of the Voznesensky intrusive massif (Southern Urals): Оn the question of the composition and sources of magmas producing gold and copper porphyry mineralization. Lithosphere (Russia), 21(3), 365385. (In Russ.)

40. Znamensky S.E., Holodnov V.V. (2018) Petrological-geochemical features of ore-bearing effusive and intrusive rocks of the Nikolaevskoe gold-porphyry deposit (the Southern Urals). Lithosphere (Russia), 18(4), 607-620. (In Russ.) https://doi.org/10.24930/1681-9004-2018-184-607-620

41. Znamensky S.E., Artemyev D.A., Ankusheva N.N. (2022) REE in the Calcite of Au-Cu Porphyry Mineralization at the Kutuevsky Occurrence, South Urals: LA-ICP-MS Data. Geoshem. Int., 60(9), 830-840.

42. Znamensky S.E., Kosarev A.M., Shafigullina G.T. (2019) Facies composition, geochemical features and geodynamic settings of the formation of the Late Emsian island-arc complexes of the Main Ural Fault zone in the Southern Urals. Vestn. Perm. un-ta. Geologiya, 18(1), 1-16. (In Russ.)

43. Znamensky S.E., Kosarev A.M., Shafigullina G.T. (2022) Karagaikul gold-porhyric ore occurrence (South Urals): Geochemistry and petrogenesis of intrusive rock, composition of minerals of near-ore metasomatites and ores. Georesursy = Georesources, 24(3), 187-196. (In Russ.) https://doi.org/10.18599/grs.2022.3.16


Review

For citations:


Znamensky S.E. Mineralogy and petrogenesis of intrusive rocks of the Kutuevsky Au-Cu-porphyry ore occurrence (Southern Urals). LITHOSPHERE (Russia). 2025;25(1):114-133. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-1-114-133. EDN: CDRSBY

Views: 664


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)