Minerals of spinel group from izrandites of the Alexandrovsky polymetamorphic complex in the Southern Urals
https://doi.org/10.24930/2500-302X-2024-24-6-1084-1102
Abstract
Object of research. Spinelides of izrandites of the Aleksandrov polymetamorphic complex in the Southern Urals. Purpose of research. Studying of composition of spinel group minerals and coexisting ilmenite in single grains and in different phases in unmixing structures after decomposition of solid solutions, reconstruction of primary compositions of oxide minerals and comparison with the same minerals from Ural-Alaskan-type complexes having an ankaramine affinity. Methods. The study was performed on a Tescan Mira scanning electron microscope at the “Geoanalitic” Center of Common Use (Ekaterinburg). The images were obtained in backscattered electron mode. The composition of minerals was determined in points and using an area scanning facilities of SEM for the unmixing structures of spinels. Results. Chrome spinel containing more than 25 wt % Cr2O3 and corresponding to the earliest stage of crystallization has been discovered in izrandites of the Alexandrovsky polymetamorphic complex in the Southern Urals. The several stages of Cr-Fe-Ti-oxide and rock-forming silicates crystallization were determined. It was shown that during cooling and subsolidus transformation, oxide minerals undergo complex multistage decomposition of the solid solution with the formation of phases enriched in aluminum and ferric iron in equilibrium with ilmenite. The compositions of these phases are distributed along the Cr-spinel solvus. The earliest primary hypersolvus spinels form inclusions in olivine and clinopyroxene. They are characterized by 3–4 wt % of TiO2 and 15–20 wt % of Cr2O3. The late spinel forms inclusions in kaersutite and are situated in the intergranular space. Their compositions are poor in Cr2O3 < 7%, but rich in TiO2 10–25 wt %, corresponding to titanomagnetite and ulvospinel. Conclusions. The composition of rocks, silicate minerals and Cr-Fe-Ti-oxides confirm the similarity of izrandites with ankaramites and tilaites from complexes of Ural-Alaskan-type. High titanium content in izrandites in comparison with similar rocks of the Ural Platinum Belt reflect the geochemical peculiarities of the primary melt which was formed by melting of the metasomatically transformed Mesoproterozoic mantle under the influence of a plume.
About the Authors
S. V. PribavkinRussian Federation
Sergey V. Pribavkin
15 Academician Vonsovsky st., Ekaterinburg 620110
A. P. Biryuzova
Russian Federation
Anna P. Biryuzova
15 Academician Vonsovsky st., Ekaterinburg 620110
E. V. Pushkarev
Russian Federation
Evgeney V. Pushkarev
15 Academician Vonsovsky st., Ekaterinburg 620110
I. A. Gottman
Russian Federation
Irina A. Gottman
15 Academician Vonsovsky st., Ekaterinburg 620110
References
1. Ahmed A.H., Helmy H.M., Arai S., Yoshikawa M. (2007) Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic-ultramafic intrusions, Eastern Desert, Egypt. Lithos, 104, 85-98. https://doi.org/10.1016/j.lithos.2007.11.009
2. Arai S. (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol., 113, 191-204.
3. Barnes S.J. (2000) Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol., 41, 387-409. https://doi.org/10.1093/petrology/41.3.387
4. Barnes S., Li Z. (1999) Chrome spinel from the Jinchua Ni-Cu sulfide deposit, Gansu Province, People Republic of China. Econ. Geol., 94, 343-356. https://doi.org/10.2113/gsecongeo.94.3.343
5. Barnes S.J., Roeder P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol., 42, 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
6. Barsdell M., Berry R.F. (1990) Origin and evolution of primi tive island-arc ankaramites from Western Epi, Vanu atu. J. Petrol., 31, 747-777. https://doi.org/10.1093/petrology/31.3.747
7. Candia M.A.F., Gaspar J.C. (1997) Chromian spinels in metamorphosed ultraafic rocks from Mangabal I and II complexes, Goias, Brazil. Mineral. Petrol., 60, 27-40.
8. Cawthorn R.G., Wet M., Hatton C.J., Cassidy K.F. (1991) Ti-rich chromite from the Mount Ayliff Intrusion, Transkei: Further evidence for high Ti tholeiitic magma. Amer. Miner., 76, 561-573.
9. Della-Pasqua F.N., Varne R. (1997) Primitive ankarami tic magmas in volcanic arcs: A melt-inclusion approach. Canad. Miner., 35, 291-312.
10. Eales H.V., Wilson A.H., Reynolds I.M. (1988) Complex unmixed spinels in layered intrusions within an obducted ophiolite in the Natal-Namaqua mobile belt. Miner. Depos., 23, 150-157.
11. Efimov A.A. (1984) Gabbro-hypermafic complexes of the Urals and the problem of ophiolites. Moskow, Nauka Publ., 232 p. (In Russ.)
12. Fershtater G.B., Bea F., Pushkarev E.V., Garuti G., Montero P., Zaccarini F. (1999) New data on the geochemistry of the Urals Platinum Belt: Contributions to the understanding of petrogenesis. Geokhimiya, (4), 352-370. (In Russ.)
13. Garuti G., Pushkarev E.V., Thalhammer O.A.R., Zaccarini F. (2012) Chromitites of the Urals (pt 1): Overview of chromite mineral chemistry and geo-tectonic setting. Ofiolity, 37(1), 27-53. https://doi.org/10.4454/ofioliti.v37i1.404
14. Garuti G., Pushkarev E.V., Zaccarini P.F., Cabella R., Anikina E. (2003) Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia). Miner. Depos., 38, 312-326.
15. Henderson P., Wood R.J. (1982) Reaction relationships of chrome-spinels in igneous rocks – further evidence from the layered intrusion of Rhum and Mull, Inner Hebrides, Scotland. Contrib. Miner. Petrol., 78, 225-229.
16. Irvine T.N. (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: A new perspective. Geology, 5, 273-277.
17. Kamenetsky V.S., Crawford A.J., Meffre S. (2001) Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol., 42, 655-671. https://doi.org/10.1093/petrology/42.4.655
18. Korinevskii V.G., Kotlyarov V.A. (2009) Mineralogy of plagioclase–olivine clinopyroxenite (izrandite) of the Urals. Lithosphere (Russia), (4), 27-40. (In Russ.)
19. Krause J., Brügmann G.E., Pushkarev E.V. (2007) Accessory and rock forming minerals monitoring the evolution of zoned maficultramafic complexes in the Central Ural Mountains. Lithos, 95, 19-42. https://doi.org/10.1016/j.lithos.2006.07.018
20. Leake B., Woolley A., Arps C., Birch W., Gilbert C., Grice J., Hawthorne F., Kato A., Kisch H., Krivovichev V., Linthout K., Laird J., Mandarino J., Maresch W., Nickel E., Rock N., Schumacher J., Smith D., Stephenson N., Guo Y. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association. Commission on new minerals and mineral names. Amer. Miner., 82, 1019-1037.
21. Loferski P.J., Lipin B.R. (1983) Exsolution in metamorphosed chromite from the Red Lodge District, Montana. Amer. Miner., 68(7-8), 777-789.
22. Luo Y., Su B.-X., Thakurta J., Xiao Y., Bai Y. (2022) Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska. Minerals, 12(6), 717. https://doi.org/10.3390/min12060717
23. Morimoto N. (1988) Nomenclature of Pyroxenes. Mineral. Petrol., 39, 55-76.
24. Mossman D.J. (2000) High-Mg arc-ankaramitic dikes, Greenhills complex, Southland, New Zeland. Canad. Miner., 38, 191-216. https://doi.org/10.2113/gscanmin.38.1.191
25. Muir J.E., Naldrett A.J. (1973) A natural occurrence of two-phase chromium-bearing spinels. Canad. Miner., 11, 930-939.
26. Nosova A.A., Sazonova L.V., Kargin A.V., Larionova Yu.O., Gorozhanin V.M., Kovalev S.G. (2012) Mesoproterozoic within-plate igneous province of the western Urals: Main petrogenetic rocs types and their origin. Petrology, 20(4), 356-390 (translated from Petrologiya, 41(2), 392-498).
27. O’Driscoll B., Emeleus C.H., Donaldson C.H., Daly J.S. (2010) Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: Cumulate assimilation and in situ crystallization in a deforming crystal mush. J. Petrol., 51, 1171-1201. https://doi.org/10.1093/petrology/egq013
28. Ovchinnikov L.N., Dunaev V.A. (1968) About the oldest deep-seated rocks of the Urals. Deep body of the Urals. Moskow, Nauka Publ., 200-209. (In Russ.)
29. Plaksenko A.N. (1989) Typomorphism of accessory Cr-spinels of ultramafic-mafic igneous formations. Voronezh, Voronezh University Publishing House, 224 p. (In Russ.)
30. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DizainPoligrafServis Publ., 280 p. (In Russ.)
31. Pushkarev E.V. (2000) Petrology of the Uktus dunite-clinopyroxenite-gabbro massif (the Middle Urals). Ekaterinburg, IGG UrO RAN Publ., 296 p. (In Russ.)
32. Pushkarev E.V., Gottman I.A. (2017) Composition of clino-pyroxene phenocrysts and chrome-spinel and titanomagnetite inclusions as indicators of ankaramite nature of porphyritic tilaites of the Uktus dunite-clinopyroxenite-gabbro massif in the Middle Urals. Vestnik Ural’skogo Otdeleniya RMO, (14), 107-118. (In Russ.)
33. Pushkarev E.V., Gottman I.A. (2011) Olivine clinopyroxenites and izrandites (tylaites) of the Aleksandrovsky and Ufaleysky metamorphic complexes – fragments of an ancient platinum-bearing association? Tectonics, ore deposits and the deep structure of the earth’s crust. Ekaterinburg, IGG UrO RAN Publ., 215-219. (In Russ.)
34. Pushkarev E.V., Khiller V.V. (2017) From chromite to titanomagnetite – a complete crystallization cycle of oxide minerals in intrusive ankaramites of the Molostovsky complex in the Southern Urals. Vestnik Ural’skogo Otdeleniya RMO, (14), 119-130. (In Russ.)
35. Pushkarev E.V., Lavrenchuk A.V., Gottman I.A., Sklyarov E.V. (2023) Calcium-rich ultramafites, ankaramites and clinopyroxene-porphyric gabbros of the Bir khin massif in the Olkhon region: Solving the problem of primary melt and formation of intrusion. Geol. Geofiz., 64(9), 1279-1302. (In Russ.) https://doi.org/10.15372/GiG2023126
36. Pushkarev E.V., Ryazantsev A.V., Gottman I.A., Degtyarev K.E., Kamenetskii V.S. (2018) Ankaramites: A new type of high-magnesian and high-calcium primitive melt in the Magnitogorsk island-arc zone (Southern Urals). Dokl. Earth Sci., 479(2), 463-467 (translated from Dokl. Akad. Nauk, 479(4), 433-437). https://doi.org/10.7868/s0869565218100171
37. Pystin A.M. (1978) Aleksandrovsky gneiss-amphibolite complex. Volcanism, metamorphism and ferruginous quartzites framing the Taratash complex. Sverdlovsk, UNTs AN SSSR Publ., 3-32. (In Russ.)
38. Pystin A.M., Pystina Yu.I. (2015) Archean and Paleoproterozoic history of rock metamorphism in the Urals crustal segment. Tr. Karel’skogo NTs RAN, (7), 3-18. (In Russ.) https://doi.org/10.17076/geo163
39. Ronkin Yu.L., Sindern S., Lepikhina O.P. (2012) Isotope geology of the oldest Southern Urals formations. Lithosphere (Russia), (5), 50-76. (In Russ.)
40. Sack R.O., Ghiorso M.S. (1991) An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contrib. Mineral. Petrol., 106, 474-505.
41. Savel’ev D.E., Masagutov R.Kh., Sirota S.N. (2022) Mineralogical features and subsolidus structures of the izrandites of the Alexander complex. Geol. Vestnik, (2), 30-47. (In Russ.) https://doi.org/10.31084/2619-0087/2022-2-3
42. Stepanov A.I., Ronkin Yu.L., Glavatskikh S.P. (2013) Titanomagnetite in rocks of the izrandite-clinopyroxenite complex of the Karandash Mountain massif (Southern Urals). Tr. IGG UrO RAN, vyp. 160, 293-295. (In Russ.)
43. Tamura A., Arai S. (2004) Inhomogeneous spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: Variations of spinel unmixing texture and chemical composition. Sci. Rep. Kanazawa Univ., 48(1-2), 9-29.
44. Tevelev Al.V., Kosheleva I.A., Tevelev Ark.V., Khotylev A.O., Moseichuk V.M., Petrov V.I. (2015) New data on the isotope age of the Taratash and Aleksandrovsky metamorphic complexes (Southern Ural). Vestn. Moskovskogo Un-ta. Ser. 4. Geol., (1), 27-42. (In Russ.)
45. Warr L.N. (2021) IMA–CNMNC approved mineral symbols. Mineral. Mag., 85, 291-320. https://doi.org/10.1180/mgm.2021.43
46. Zakrezewski M.A. (1989) Chromian spinels from Kusa, Bergslagen, Sweden. Amer. Miner., 74, 448-455.
Review
For citations:
Pribavkin S.V., Biryuzova A.P., Pushkarev E.V., Gottman I.A. Minerals of spinel group from izrandites of the Alexandrovsky polymetamorphic complex in the Southern Urals. LITHOSPHERE (Russia). 2024;24(6):1084-1102. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-1084-1102