Preview

LITHOSPHERE (Russia)

Advanced search

Mineralogy and genesis of apocarbonate serpentinites of the Pitkäranta mining district, Northern Ladoga region. Part 1. Ophicalcite of the Hopunvaara ore field

https://doi.org/10.24930/2500-302X-2024-24-6-1060-1083

Abstract

Research subject. Serpentinites of the apocarbonate type in the contact aureole of the Salmi Batholith. Aim. Mineralogical and genetic description of the calcite-serpentine rocks of the Hopunvaara ore field. Materials and methods. Thirty samples of ophicalcite were studied using scanning electron microscopy, electron probe analysis, powder X-ray diffraction, FTIR and Raman spectroscopy, as well as differential thermal analysis. Results. The ophicalcite of the Hopunvaara ore field is represented by two types. The first variety was studied on samples from the Izvestkovyi quarry (“Lime Break”). It consists of thin-fibrous aggregates of clinochrysotile and lizardite (or only lizardite) intergrowing with calcite, with subordinate amounts of phlogopite and fluorapatite, as well as with veins of magnetite. Serpentine contains a small amount of impurities – up to 1.0 wt % FeO, up to 0.7 wt % Al2O3 and not more than 0.1 wt % MnO. Calcite is chemically pure. Ophicalcite of the second type, described in the Klara mining, is composed mainly of lizardite, which forms complete pseudomorphs after crystals of forsterite and/or minerals of the humite group enclosed among a carbonate matrix. Serpentine contains 0.4–2.5 wt % FeO, 0.0–1.6 wt % Al2O3, 0.1–0.2 wt % MnO, and 0.9–2.1 wt % F. In the carbonate matrix, along with almost pure calcite, there is dolomite containing 1.4 wt % MnO. Minor minerals are represented by fluorite, phlogopite and sphalerite. Such a rock is sectioned by antigorite-carbonate-fluorite-hematite veins with cassiterite, the formation temperature of which is estimated at 300–350°C. Conclusions. The formation of ophicalcite of the first type occurred through the interaction of dolomite with acidic SiO2-rich 200–300°C hydrothermal solutions. The microfiber structure of apodolomite serpentine aggregates is due to the mechanism of their crystallization in a porous medium that occurs during carbonate leaching. Ophicalcite of the second type was formed as a result of serpentinization of forsterite calciphyres at the regressive stage of skarnification process at T < 370°C.

About the Authors

M. O. Bulakh
Lomonosov Moscow State University
Russian Federation

Maria O. Bulakh, Geological faculty

1 Leninskie Gory, 119991 Moscow



I. A. Baksheev
Lomonosov Moscow State University
Russian Federation

Ivan A. Baksheev, Geological faculty

1 Leninskie Gory, 119991 Moscow



V. O. Yapaskurt
Lomonosov Moscow State University
Russian Federation

Vasily O. Yapaskurt, Geological faculty

1 Leninskie Gory, 119991 Moscow



References

1. Aleksandrov S.M. (1990) Geochemistry of Skarn and Ore Formation in Dolomites. Moscow, Nauka Publ., 344 p. (In Russ.)

2. Aleksandrov S.M., Troneva M.A. (2009) Composition and genesis of endogenous borates of Pitkyaranta ore field, Karelia. Geokhimiya, (9), 972-987. (In Russ.)

3. Amelin Yu.V., Beljaev A., Larin A.M. (1991) Salmi batholith and Pitkäranta ore field in Soviet Karelia. Geol. Surv. of Finland, 33, 57 p.

4. Amelin Yu.V., Larin A.M., Tucker R.D. (1997) Chronology of multi-phase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: Implications for magmatic evolution. Contrib. Miner. Petrol., 127, 353-368.

5. Balan E., Fritsch E., Radtke G., Paulatto L., Juillot F., Petit S. (2021) First-principles modeling of infrared spectrum of antigorite. Eur. J. Mineral., 33, 389-400. https://doi.org/10.5194/ejm-33-389-2021

6. Borisov I.V. (2017) Pitkyarantsky complex underground workings (Northern Ladoga). Speleology and Spelestology. Proceeding of the VIII International Scientific Conference. Naberezhnye Chelny, NGPU, 234-243. (In Russ.)

7. Borisov I.V., Ilyin P.V. (2004) Pitkäranta Mines and Factories. Sortavala; Pitkyaranta, Regional’nyi muzei Severnogo Priladozh’ya, 53 p. (In Russ.)

8. Bucher K., Grapes R. (2011) Petrogenesis of Metamorphic Rocks. 8th ed. Berlin; Heidelberg, Springer Verlag, 428 p.

9. Burtseva M.V., Ripp G.S., Posokhov V.F., Murzintseva A.E. (2015) Nephrites of Eastern Siberia: Geochemical features and problems of genesis. Geologiya i Geofizika, 56(3), 516-527. (In Russ.) https://doi.org/10.15372/GiG20150303

10. Chernosky J.V., Berman R.G., Brindzia L.T. (1988) Stability, phase relation and thermodynamic properties of chlorite and serpentine group minerals. Rev. Miner. Geochem., 19, 295-346.

11. Coleman R.G. (1971) Petrologic and Geophysical Nature of Serpentinites. Geol. Soc. Amer. Bull., 82(4), 897. https://doi.org/10.1130/0016-7606

12. Compagnoni R., Cossio R., Mellini M. (2021) Raman anisotropy in serpentine minerals, with a caveat on identification. J. Raman Spec., 52(7), 1334-1345. https://doi.org/10.1002/jrs.6128

13. Demchenko V.S. (1983) Physical-chemical conditions of serpentinization of dolomite marbles, diopside and forsterite calcyphers. Tikhookeanskaya Geologiya, (3), 56-63. (In Russ.)

14. Eskola P. (1951) Around Pitkäranta. Ann. Acad. Sci. Fenn. Geol. Geogr., 3, 90 p.

15. Evans B.W. (1977) Metamorphism of alpine peridotites and serpentinites. Ann. Rev. Earth Planet. Sci., 5, 397-444. https://doi.org/10.1146/annurev.ea.05.050177.002145

16. Evans B.W. (2004) The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev., 46, 479-506. https://doi.org/10.2747/0020-6814.46.6.479

17. Farmer V.C. (1974) The Infrared Spectra of Minerals. L., Mineralogical Society of Great Britain and Ireland, 539 p.

18. Faust G.T., Fahey J.J. (1964) The serpentine-group minerals. Geol. Survey Professional Paper, (384), 92 p. https://doi.org/10.3133/pp384A

19. Flemetakis S., Berndt J., Klemme S., Genske F., Cadoux A., Louvel M., Rohrbach A. (2020) An improved electron microprobe method for the analysis of halogens in natural silicate glasses. Microsc. Microanal., 26, 857-866. https://doi.org/10.1017/S1431927620013495

20. Fuhrmann G. (1810) Mineralogical description of some parts of Old and New Finland. Gornyi Zhurnal. Book 11, 3-39. (In Russ.)

21. Gadolin A. (1956) Beobachtungen über einige Mineralien aus Pitkäranta in Finnland. Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St.Petersburg, 173-196.

22. Gerasimova E.I. (2007) Mineral variety of metasomatic rocks and late hydrothermal formations of the ore deposits of Pitkäranta district (South Karelia, Russia). Mineral Diversity: Research and Preservation. IV Int. symp. Sofia, Earth and Man National Museum, 67-74.

23. Gerasimova E.I., Pekov I.V., Bryzgalov I.A. (2008) Micas of ore deposits of Pitkyarantsky district (Karelia, Russia). Geochemistry of Igneous Rocks. Proceedings of the XXV Seminar, 32-33. (In Russ.)

24. Gerasimova E.I., Pekov I.V., Kononkova N.N., Zubkova N.V. (2009) New data on humite group minerals from Pitkyaranta district (Karelia). Minerals: Structure, Properties, Research Methods. Materials of the conference, 116-118. (In Russ.)

25. Imai N., Otsuka R., Honda S., Isoda N., Suzuki S. (1976) Serpentines associated with hydrothermal dolomite-rock at the Waka Sen-nin mine, Iwate Prefecture, Japan. J. Japan. Assoc. Min. Petr. Econ. Geol., 71, 339-359.

26. Ivanova V.P., Kasatov B.K., Krasavina T.N., Rozinova E.L. (1974) Thermal Analysis of Minerals and Rocks. Leningrad, Nedra Publ., 399 p. (In Russ.)

27. Ivashchenko V.I. (1987) Skarn Mineralization of Tin and Tungsten of the Southern Part of the Baltic Shield. Leningrad, Nauka Publ., 240 p. (In Russ.)

28. Ivashchenko V.I. (2021) Rare-metal (In, Bi, Te, Se, Be) mine ralization of skarn ores in the Pitkäranta mining district, Ladoga Karelia, Russia. Minerals, 11(2), 124. https://doi.org/10.3390/min11020124

29. Ivashchenko V.I., Golubev A.I. (2015) New aspects of mineralogy and metallogeny of the Pitkäranta mining district. Zap. KarNTs RAN, 7, 127-148. (In Russ.) https://doi.org/10.17076/geo149

30. Jossa G. (1834) News on tin and copper discoveries at Pitkäranta, Finland. Min. J. Petersburg, IV, 157. (In Russ.)

31. Khazov R.A. (1973) Geological Characteristics of Tin Mineralization in the Northern Ladoga Lake Area. Leningrad, Nauka Publ., 87 pp. (In Russ.)

32. Klein F., Humphris S.E., Bach W. (2020) Brucite formation and dissolution in oceanic serpentinite. Geochem. Persp. Let., 1-5. https://doi.org/10.7185/geochemlet.2035

33. Larin A.M., Amelin Yu.V., Neymark L.A. (1991) Age and genesis of complex skarn ores from the Pitkäranta mining district. Geol. Rud. Mestorozhd., (6), 15-33. (In Russ.)

34. Lyutoev V.P. (2000) Isomorphism and Intrinsic Defects in Serpentine-Group Minerals. Ekaterinburg, UrO RAN Publ., 149 p. (In Russ.)

35. Makeev A.B., Bryanchaninova N.I. (1999) Topomineralogy of Ultrabasites of the Polar Urals. St.Petersburg, Nauka Publ., 252 p. (In Russ.)

36. Myers B.E. (1988) The formation of zoned metasomatic veins and massive skarn in dolomite, Southern Sierra Nevada, California. Master’s thesis. Tucson, University of Arizona, 125 p.

37. Nefedov E.I. (1973) Mineralogy of Pitkäranta deposit. Metallicity and Mineralogy of the Skarnoids of the South of Karelia and the West of the Kola Peninsula. Geol. Report. Leningrad, VSEGEI, 326 p. (In Russ.)

38. Neymark L.A., Holm-Denoma Ch.S., Moscati R.J. (2018) In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrixmatched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chem. Geol., 483, 410-425. https://doi.org/10.1016/j.chemgeo.2018.03.008

39. Niiranen T., Hanski E., Eilu P. (2003) General geology, alteration and iron deposits in the Palaeoproterozoic Misi region, northern Finland. Bull. Geol. Soc. Finland, 75(1-2), 69-92.

40. Nikolskaya Z.D., Larin A.M. (1972) Greisens of the Pitkäranta Ore Field. Zap. VMO, (6), 290-297. (In Russ.)

41. Nironen M. (1997) The Svecofennian Orogen: A tectonic model. Precambr. Res., 86, 21-44.

42. Petrov V.P., Sokolova L.A. (1957) Aspagashskoe deposit of chrysotile-asbestos (Minusinsk basin). Tr. IGEM, (17), 85-106. (In Russ.)

43. Proterozoic Ladoga Structure (Geology, Deep Structure and Mineral Genesis). (2020) (Ed. by N.V. Sharov). Petrozavodsk, KarNTs RAN, 435 p. (In Russ.)

44. Rinaudo C., Gastaldi D., Belluso E. (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Canad. Miner., 41, 883-890.

45. Saksela M. (1951) Zur Mineralogie und Entstehung der Pitkäranta-Erze. Bull. Comm. Géol. Finlande, 154, 182-230.

46. Shabynin L.I. (1973) Formation of Magnesian Skarns. Moscow, Nauka Publ., 214 p. (In Russ.)

47. Shabynin L.I. (1974) Ore Deposits in the Magnesian Skarn Formation. Moscow, Nedra Publ., 288 p. (In Russ.)

48. Shteinberg D.S., Chashchukhin I.S. (1977) Serpentinization of Ultrabasites. Moscow, Nauka Publ., 312 p. (In Russ.)

49. Stein H.J., Markey R.G., Morgan J.V., Sunbland K., Larin A.M. (1996) Re-Os dating of molybdenite: New tools, new applications, new interpretations – an example from Karelian Russia. Trans. Amer. Geophys. Union, 77, 773-774.

50. Stewart L.A. (1956) Chrysotile Asbestos Deposits of Arizona (supp.). U.S. Bureau of Mines Information Circular 7745, 124 p.

51. Talantsev A.S. (1981) Geothermobarometry by Dolomite-Calcite Paragenesis. Moscow, Nauka Publ., 136 p. (In Russ.)

52. Törnebohm A.E. (1891) Om Pitkäranta malmfält och dess omgifningar. Geol. Fören. Stockholm Förh., 13, 313-334.

53. Trittscharck R., Grobéty B., Koch-Müller M. (2012) In situ high-temperature Raman and FTIR spectroscopy of the phase transformation of lizardite. Amer. Miner., 97, 1965-1976. https://doi.org/10.2138/am.2012.4162

54. Trüstedt O. (1907) Die Erzlagerstätten von Pitkäranta am Ladoga-See. Bull. Comm. Géol. Finlande, 19.

55. Valkama M., Sundblad K., Cook N.J., Ivashchenko V.I. (2016) Geochemistry and petrology of indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia. Miner. Dep., 51, 823-239. https://doi.org/10.1007/s00126-016-0641-4

56. Van der Hoeven K.J., Knauth L.P., Burt D.M. (1999) Extremely low-temperature magnesian skarns – Chrysotile deposits of the Salt River Canyon area, Central Arizona. Geol. Soc. Amer., Abstracts with Programs, 31, 161.

57. Van Gosen B.S. (2008) Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Southwestern United States (Arizona, Nevada, and Utah). U.S. Geological Survey Open-File Report. USGS Numbered Series. https://doi.org/10.3133/ofr20081095.

58. Varlakov A.S. (1986) Petrology of Serpentinization Processes of Ultrabasites of Folded Regions. Sverdlovsk, UNTS AN SSSR, 224 p. (In Russ.)

59. Varlakov A.S. (1999) Serpentines of ultrabasic rocks of the Urals. Ural. Mineral. Sbornik, (9), 78-101. (In Russ.)

60. Vinogradova R.A. (1973) About serpentines from the skarns of the Margoz deposit (Eastern Sayan). Proceedings of the Fersman Mineralogical Museum, (22), 26-35. (In Russ.)

61. Vyasa Rao A.N., Murty M.S. (1980) A study of the serpentinization in the Vempalle dolomitic limestones near Pulivendala, Cuddapah District. Proc. Indian. Acad. Sci., 89(1), 17-22.

62. Yanin E.P. (2013) Asbestos-bearing areas and rocks as natural sources of asbestos dust entering the environment. Nauchnye i Tekhnicheskie Aspekty Okhrany Okruzhayushchei Sredy, (5), 18-47. (In Russ.)

63. Yao Y., Chen J., Lu J., Wang R., Zhang R. (2014) Geology and genesis of the Hehuaping magnesian skarn-type cassiterite-sulfide deposit, Hunan Province, Southern China. Ore Geol. Rev., 58, 163-184. https://doi.org/10.1016/j.oregeorev.2013.10.012

64. Yariv S., Heller-Kallai L. (1973) The relationship between the IR spectra of serpentines and their structures. Clays Clay Miner., 23, 145-152.


Review

For citations:


Bulakh M.O., Baksheev I.A., Yapaskurt V.O. Mineralogy and genesis of apocarbonate serpentinites of the Pitkäranta mining district, Northern Ladoga region. Part 1. Ophicalcite of the Hopunvaara ore field. LITHOSPHERE (Russia). 2024;24(6):1060-1083. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-1060-1083

Views: 744


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)