Mössbauer spectroscopy of ore-forming chromium spinels of the Polar Urals
https://doi.org/10.24930/2500-302X-2024-24-6-1046-1059
Abstract
Research subject. The work studied the heterogeneity of the chemical and phase composition of chromitites and ore-forming chromium spinels of the Polar Ural massifs Rai-Iz and Voikaro-Syninsky. Its influence on the value of the oxidation state of iron (Fe# = Fe3+/(Fe3+ + Fe2+)), determined by the calculation method, from the stoichiometric formula of the mineral, and using Mössbauer spectroscopy, is analyzed. The purpose of the study is to determine the degree of influence of various manifestations of the heterogeneity of the chemical composition of spinel on the results of determining Fe3+/(Fe3+ + Fe2+) using Mössbauer spectroscopy. Methods and materials. Monofractions of ore-forming chromium spinels were studied by Mössbauer spectroscopy (SM2201 spectrometer). The study of the heterogeneity of chromium spinel grains was carried out using microprobe analysis (electron probe microanalyzer Cameca SX-100) in polished sections and blocks, as well as X-ray phase analysis (powder diffractometer SHIMADZU XRD-6000) in samples analyzed on a Mössbauer spectrometer. Results. The studied ore-forming spinels exhibit three types of compositional heterogeneity, which determine the Fe#Möss– Fe#stoich discrepancy and influence its value: 1) chemical zoning of grains; 2) multiphase, associated with the presence of two generations of mineral grains with varying degrees iron oxidation; 3) hidden multiphase, manifested in broadening of diffraction peaks. In all cases, there is variability in the degree of iron oxidation in the mineral grains. Conclusions. The studied ore-forming spinels of the main ore bodies of the Rai-Iz massif and the northern part of the Voykar-Synya massif have a normal, unconverted structure, and the distribution of cations over its positions corresponds to the crystal chemical formula. Deviations in the distribution of iron cations, established during the study of the mineral by Mössbauer spectroscopy, are associated with the chemical heterogeneity of its grains and the presence in the ore of several spinel phases of different compositions.
About the Authors
P. B. ShiryaevRussian Federation
Pavel B. Shiryaev
5 Academician Vonsovsky st., Ekaterinburg 620110
N. V. Vakhrusheva
Russian Federation
Nadezhda V. Vakhrusheva
5 Academician Vonsovsky st., Ekaterinburg 620110
References
1. Ballhaus C., Berry R., Green D. (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol., 107, 27-40.
2. Bancroft G.M., Osborne M.D., Fleet M.E. (1983) Next-nearest neighbour effects in the Mössbauer spectra of Crspinels: An application of partial quadrupole splittings. Solid State Commun., 47(8), 623-625.
3. Canil D., Virgo D., Scarfe C.M. (1990) Oxidation state of mantle xenoliths from British Columbia, Canada. Contrib. Mineral. Petrol., 104, 453-462.
4. Carbonin S., Russo U., Della Giusta A. (1996) Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. Mineral. Mag., 399(60), 355-368.
5. Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. (2007) Crystal chemistry of Cr-spinel and oxythermobarometry of ultramafic rocks of folded belts. Ekaterinburg, IGG UrO RAN, 310 p. (In Russ.)
6. Chashchukhin I.S., Votyakov S.L., Uymin S.G., Borisov D.R., Bykov V.N. (1996) Mössbauer spectroscopy of chrome-spinels and problems of oxythermobarometry of chromite-bearing ultramafic rocks of the Urals. Ekaterinburg, IGG UrO RAN, 136 p. (In Russ.)
7. Da Silva E.G., Abras A., Sette Camara A.O.R. (1976) Mössbauer effect study of cation distribution in natural chromites. J. Phys., 12, 783-785.
8. Dare S.A.S., Pearce J.A., McDonald I., Styles M.T. (2009) Tectonic discrimination of peridotites using fO2-Cr# and Ga-Ti-FeIII systematics in chrome-spinel. Chem. Geol., 261(3–4), 199-216.
9. Davis F.A., Cottrell E., Birner S.K., Warren J.M., Lopez O.G. (2017) Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Amer. Miner., 102(2), 421-435. https://doi.org/10.2138/am-2017-5823
10. Dyar M.D., McGuire A.V., Ziegler R.D. (1989) Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Amer. Miner., 74(9–10), 969-980.
11. Fatseas G., Dormann J., Blanchard H. (1976) Study of the Fe3+/Fe2+ ratio in natural chromites (Fex, Mg1–x) (Cr1–y–z, Fey, Alz)O4. J. Phys. Colloques, 37(C6), 787-792.
12. Lenaz D., Andreozzi G., Mitra S., Bidyananda M., Princivalle F. (2004) Crystal chemical and 57Fe Mössbauer study of chromite from the Nuggihalli schist belt (India). Mineral. Petrol., 80, 45-57.
13. Luhr J.F., Aranda-Gуmez J.J. (1997) Mexican peridotite xenoliths and tectonic terranes: Correlations among vent location, texture, temperature, pressure, and oxygen fugacity. J. Petrol., 38, 1075-1112.
14. McGuire A.V., Dyar M.D., Ward K.A. (1989) Neglected Fe3+/Fe2+ ratios – A study of Fe3+ content of megacrysts from alkali basalts. Geology, 17(8), 687-690.
15. Osborne M.D., Fleet M.E., Bancroft M.G. (1981). Fe2+-Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol., 77(3), 251-255.
16. Ozawa K. (1989) Stress-induced Al-Cr zoning of spinel in deformed peridotites. Nature, 338, 141-144.
17. Parkinson I.J., Pearce J.A. (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J. Petrol., 39, 1577-1618.
18. Saltykova A.K. (2008) Material composition, thermal and redox state of the upper mantle of the Baikal-Mongolian region (data from mantle xenoliths from Cenozoic alkaline basalts). Abstract of Cand. geol. and min. sci. diss. St.Petersburg, IGGD, 24 p. (In Russ.)
19. Savelieva G.N., Batanova V.G., Kuz’min D.V., Sobo lev A.V. (2015) Composition of minerals in mantle peridotites as proxy of ore-forming processes in the mantle: Evidence from ophiolites in the Voykar–Synya and Kempirsai Massifs. Lithol. Miner. Resour., 1(50), 80-92 (translated from Litologiya i Polez. Iskopaemye, 1(50), 87-98).
20. Shiryaev P.B., Vakhrusheva N.V. (2017) Сhemical zoning of spinels and olivines from chromitites and the enclosing ultramafites of the Rai-Iz massif Tsentralnoye deposit (the Polar Urals). Izv. UGGU, 4(48), 29-35. https:// doi.org/10.21440/2307-2091-2017-4-29-35
21. Shiryaev P.B., Vakhrusheva N.V., Nikandrova N.K. (2010) Redox state of chromium ores and rocks of the Naran massif (Mongolia). Minerals: Structure, properties, research methods. Abstracts of reports of the All-Russian conference. Miass, IGG UrO RAN, 149-150. (In Russ.)
22. Singh A.K., Jaint B.K., Date S.K., Chandra K. (1978) Structural and compositional study of natural chromites of Indian origin. J. Phys. D: Appl. Phys., 11, 769-776.
23. Vakhrusheva N.V., Shiryaev P.B., Stepanov A.E., Bogdanova A.R. (2017) Petrology and chromitites of the Rai-Iz ultramafic massif (Polar Urals). Ekaterinburg, IGG UrO RAN, 265 p. (In Russ.)
24. Votyakov S.L., Zamyatin D.A., Danilenko I.A., Chashchukhin I.S. (2023) Determination of the iron valence state in Cr-spinels by electron microprobe X-ray emission spectroscopy of Lα,β lines. Zap. RMO, 3(152), 98-112.
25. Wood B.J., Virgo D. (1989) Upper mantle oxidation state: Ferric iron contents of Iherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta, 53(6), 1277-1291.
26. Woodland A.B., Kornprobst J., Wood B.J. (1992) Oxygen thermobarometry of orogenic lherzolite massifs. J. Petrol., 33, 203-230.
Review
For citations:
Shiryaev P.B., Vakhrusheva N.V. Mössbauer spectroscopy of ore-forming chromium spinels of the Polar Urals. LITHOSPHERE (Russia). 2024;24(6):1046-1059. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-1046-1059