Noble-metal mineralization and conditions of formation of Au-Ag epithermal veins from Kyzik-Chadr Au-Mo-Cu porphyry deposit, Eastern Tuva
https://doi.org/10.24930/2500-302X-2024-24-6-1029-1045
Abstract
Research object. The results of mineralogical-geochemical, fluid inclusion and isotopic studies of Au-Ag epithermal veins of Kyzik-Chadr Au-Mo-Cu porphyry deposit (Eastern Tuva) are considered. The aim of the study is to examine mineralogical and geochemical peculiarities and conditions of formation of gold-sulfide-quartz veins from Kyzik-Chadr deposit to identify their ore-formation. Methods. The chemical composition of minerals was determined by SEM (Tescan MIRA 3 LMU with XMax 80 and INCA Wave 500 (Oxford Instruments Nanoanalysis Ltd). Fluid inclusion study in quartz were carried out using a Linkam TMS-600 thermostage with LinkSystem 32 DV-NC software and an Olympus BX51 optical microscope. The oxygen isotopic composition of quartz was determined on a FINNIGAN MAT 253 gas mass spectrometer. The isotopic composition of sulfur in sulfides was determined using a Finnigan MAT Delta gas mass spectrometer in the double-infusion mode. Results. A wide variety of Au-Ag minerals in gold-sulfide-quartz veins due to variations of fO2, fS2, fSe2 and fTe2 during ore formation was diagnosed: gold, Hg-gold, Hg-electrum, Hg-kustelite, weishanite (Au,Ag)1.2Hg0.8, sylvanite AgAuTe2, petzite Ag3AuTe2, hessite Ag2Te, schützite Ag5Te3, empressite AgTe, fischerite Ag3AuSe2, Se-uytenbogaardtite Ag3AuS2, acanthite Ag2S, which are associated with altaiite PbTe, coloradoite HgTe, claustalite PbSe, fahlores of tennantite-tetrahedrite series and barite. The study of fluid inclusions (thermometry, Raman spectroscopy) in quartz and mineral thermometry (petzite–hessite–native Au paragenesis) determined that the ore veins were formed due to CO2-water Na-K ± Mg-chloride fluid with salinity of 5.7–10.0 wt % NaCl eq with temperatures decreasing from 360 to 230°C and variations in fO2, fS2, fSe2, and fTe2. Oxygen isotopy in quartz indicates mixing of magmatic fluid with meteoric water (δ18O of fluid from +3.5 to +7.1‰). The δ34SH2S values of the fluid from +7.1 to +5.2‰ suggest that some sulfur was extracted from the host rocks. Conclusions. According to mineralogical and geochemical peculiarities and conditions of formation of gold-sulfide-quartz veins from Kyzik-Chadr Au-Mo-Cu porphyry deposit can be attributed to epithermal Au-Ag veins of intermediate sulfidation type, which are the product of a single porphyry-epithermal ore-magmatic system in the Kyzik-Chadr ore field.
Keywords
About the Authors
R. V. KuzhugetRussian Federation
Renat V. Kuzhuget
117a Internatsionalnaya st., Kyzyl 667007
N. N. Ankusheva
Russian Federation
Natalia N. Ankusheva
Miass, Chelyabinsk Region 456317
Yu. A. Kalinin
Russian Federation
Yury A. Kalinin
3 Academician Koptyug av., Novosibirsk 630090
A. Sh. Shavekina
Russian Federation
Alfiia Sh. Shavekina
3 Academician Koptyug av., Novosibirsk 630090
V. I. Losev
Russian Federation
Vladimir I. Losev
3 Vavilova st., Krasnoyarsk 660025
M. M. Balanay
Russian Federation
Mila M. Balanay
117a Internatsionalnaya st., Kyzyl 667007
References
1. Afifi A.M., Kelly W.C., Essene E.J. (1988) Phase relations among tellurides, sulphides and oxides: I. Thermochemical data and calculated equilibria. Econ. Geol., 83, 377-404.
2. Andreev A.V., Girfanov M.M., Starostin I.A., Avilova O.V., Kryazhev S.G., Yurmazov D.N., Babkin I.A., Semenov M.I. (2021) Geological structure, ore-metasomatic and mineralogical geochemical zoning of Au-Mo-Cu porphyry Kyzyk-Chadr deposit, Tyva republic. Ores and Metals, (1), 57-76. (In Russ.)
3. Barton P.B., Skinner B.J. (1979) Sulfide mineral stabilities. Geochemistry of Hydrothermal Ore Deposits. (Ed. H.L. Barnes). N.Y., Sley & Sons, 278-403.
4. Berzin N.A., Coleman R.G., Dobretsov N.L., Zonenshain L.P., Xuchang X., Chang E.Z. (1994) Geodynamic map of the western part of Paleoasian Ocean. Russ. Geol. Geophys., 35, 5-22.
5. Berzin N.A., Kungurtsev L.V. (1996) Geodynamic interpretation of Altai-Sayan geological complexes. Russ. Geol. Geophys., 37, 56-73.
6. Berzina A.N., Berzina A.P., Gimon V.O. (2016) Paleozoic-Mesozoic porphyry Cu(Mo) and Mo(Cu) deposits wi thin the southern margin of the Siberian Craton: Geochemistry, geochronology, and petrogenesis (a review). Minerals, 6(6), 1-25.
7. Berzina A.N., Stein H.J., Zimmerman A., Sotnikov V.I. (2003) Re-Os ages of molybdenite from porphyry and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record. Mineral Exploration and Sustainable Development. (Eds D. Eliopoulos et al.). V. 1. Rotterdam, Millpress, 231-234.
8. Bodnar R.J., Vityk M.O. (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. Fluid Inclusions in Minerals: Methods and Applications: (Eds B. De Vivo, M.L. Frezzotti). Blacksburg, Virginia Tech., 117-130.
9. Borisenko A.S. (1982) Analysis of the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. The use of thermobarogeochemistry methods in the search and study of ore deposits. (Ed. N.P. Laverov). Moscow, Nedra Publ., 37-46. (In Russ.)
10. Bortnikov N.S., Genkin A.D., Kovalenker V.A. (1987) Mineralogical and geochemical parameters of hydrothermal ore formation conditions. Endogenous ore regions and deposits. Moscow, Nauka Publ., 40-59. (In Russ.)
11. Bortnikov N.S., Kramer H., Genkin A.D. (1988) Paragenesis of tellurides of gold and silver in the gold ore deposit Florencia (Republic of Cuba). Geol. Ore Depos., (2), 49-61. (In Russ.)
12. Bowers T.S. (1991) The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures. Geochim. Cosmochim. Acta, 55, 2417-2434.
13. Davis D.W., Lowenstein T.K., Spenser R.J. (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, Na-Cl-MgCl2-H2O, and CaCl2-NaCl-H2O. Geochim. Cosmochim. Acta, 54, 591-601.
14. Gusev N.I., Berzon E.I., Semenov M.I. (2014) Kyzykchadr copper-porphyry deposit (Tuva): Geochemical features and age of magmatism. Region. Geologiya i Metallogeniya, (59), 70-79. (In Russ.).
15. Hoefs J. (2009) Stable Isotope Geochemistry. Berlin; Heidelberg, Springer, 281 p.
16. Hurai V., Huraiova M., Slobodnık M., Thomas R. (2015) Geofluids. Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes. Elsevier, 489 p.
17. LeFort D., Hanley J., Guillong M. (2011) Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu–Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada. Econ. Geol., 106, 781-808.
18. Li Y., Liu J. (2006) Calculation of sulfur isotope fractio nation in sulfides. Geochim. Cosmochim. Acta, 70, 1789-1795.
19. Ohmoto H. (1986) Stable isotope geochemistry of ore deposits. Stable Isotopes in High Temperature Geological Processes, 491-560. (Rev. Mineral. Geochem., 16).
20. Ohmoto H., Rye R.O. (1979) Isotopes of Sulfur and Carbon. Geochemistry of Hydrothermal Ore Deposits. N.Y.: Wiley, 509-567.
21. Pollard P.J., Pelenkova E., Mathur R. (2017) Paragenesis and Re-Os molybdenite age of the Cambrian Ak-Sug porphyry Cu-Au-Mo deposit, Tyva Republic, Russian Federation. Econ. Geol., 112, 1021-1028.
22. Redder E. (1978) Fluid inclusions in minerals. V. 1. Moscow, Mir Publ., 360 p. (In Russ.)
23. Rogov N.V. (1992) Magmatic and other structures, prospects and some features of metallogeny of the Kyzyk-Chadr Au-Cu-Mo deposit of Tuva. Magmatism and metallo geny of the ore regions of Tuva. Novosibirsk, Nauka Publ., 108-119. (In Russ.)
24. Rudnev S.N., Serov P.A., Kiseleva V.Yu. (2015) Vendian–Early Paleozoic granitoid magmatism in Eastern Tuva. Russ. Geol. Geophys., 56(9), 1232-1255.
25. Semenov M.I., Yurkevich L.G. (2019) Geology, geochemistry and ore content of the Ozhinsky intrusive pluto. The geological structure and minerals of Central Siberia. Krasnoyarsk, Sibirskoe PGO Publ., 110-119. (In Russ.)
26. Sillitoe R.H. (2010) Porphyry copper systems. Econ. Geol., 105, 3-41.
27. Stamborovskii N.N., Smolyakov Yu.G., Pochernyaeva L.D. (1969) Geological structure and minerals of the basin of the upper reaches of the Aksuga, Soruga and Kadyr-Oosa rivers: Final report on the works of the Soruga GSP for 1965–1967. Krasnoyarsk, Tyv. phil. FBU “TFGI for the SFO”. Inv. No. 1211. (In Russ.)
28. Starostin I.A., Chernykh A.I., Girfanov M.M. (2023) Paleogeotectonic position of the Kyzykchadr copper porphyry ore field (Republic of Tyva). Ores and Metals, (4), 52-73. (In Russ.)
29. Starostin I.A., Girfanov M.M., Yartsev E.I. (2022) Geological structure, metasomatic and hidden mineralogical zona lity of the Kyzyk-Chadr copper-porphyry deposit (Republic of Tyva). Vestn. Moskovskogo Univ. Ser. 4. Geol., (5), 90-94. (In Russ.)
30. Ussar R.T., Dobryanskii G.I., Zyuzin M.P. (1978) The results of the search for copper deposits in the Kyzyk-Chadr area and in its area. Kyzyl, 87 p. (In Russ.)
31. Vikent’eva O., Prokofiev V., Groznova E., Vikentyev I., Bortnikov N., Borovikov A., Kryazhev S., Pritchin M. (2020) Contrasting fluids in the Svetlinsk gold telluride hydrothermal system, South Urals. Minerals, 10, 37.
32. Voudouris P. (2006) A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece. Mineral. Petrol., 87, 241-275.
33. White N.C., Hedenquist J.W. (1995) Epithermal gold deposits: Styles, characteristics, and exploration. Soc. Econ. Geol. Newslett., 23, 9-13.
34. Wilkinson J.J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.
35. Yarmolyuk V.V., Kovalenko V.I. (2003) Deep Geodynamics and Mantle Plumes: Their role in the formation of the Central Asian fold belt. Petrology, 11(6), 504-531.
36. Zhang L.-G., Liu J.-X., Zhou H.B., Chen Z.-S. (1989) Oxygen isotope fractionation in the quartz-water-salt system. Econ. Geol., 89, 1643-1650.
37. Zheng Y.F. (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J., 33, 109-126.
38. Zhuravkova T.V., Pal’anova G.A., Kalinin Y.A., Goryachev N.A., Zinina V.Y., Zhitova L.M. (2019) Physico-chemical conditions of formation of gold and silver parageneses at the valunistoe deposit (Chukchi peninsula). Russ. Geol. Geophys., 60(11), 1247-1256. (In Russ.)
Review
For citations:
Kuzhuget R.V., Ankusheva N.N., Kalinin Yu.A., Shavekina A.Sh., Losev V.I., Balanay M.M. Noble-metal mineralization and conditions of formation of Au-Ag epithermal veins from Kyzik-Chadr Au-Mo-Cu porphyry deposit, Eastern Tuva. LITHOSPHERE (Russia). 2024;24(6):1029-1045. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-1029-1045