Subduction and rifting ‒ reflect of oscillatory tectonic processes on boundaries of the lithosphere segments in the probable-deterministic gravity models
https://doi.org/10.24930/2500-302X-2024-24-6-943-961
Abstract
Research subject. Convergent boundaries of the Euroassian, North American, Pacific lithosphere plates and protooceanic plate of the South China Sea on the Eastern Asia. Aim. On the base of tectonic analysis of 3D rheological gravity models compared with another geologic-geophysical data to study deep structures in zones of joint of lithosphere plates and to define space-time relations between subducton and rift structures. Material and Methods. Land and seas gravity measurements on the Russian territory and Land Gravity Data.bgi.omp.obs-mip.fr, model: EGM08_CBA_global_2190_2.5m on the territories of South East China and Sea of Japan were used. Main method of research is the gravity method for modeling of rheological properties of the crust and upper mantle by distributions of the density contrast (differentiation) of geological media (authors method). Results. Analysis of 3D distributions of density inhomogeneities in a tectonosphere of the North East Russia, Japan Sea Region, Sikhote Alin and South East China is carried out, as a result of which in the Eastern margin of Asia identical traces of tectonic processes on boundaries of the lithosphere plates, reflected their directed-oscillatory character are revealed. Traces of the subduction processes has been founded in a shape of inclined rigid sheets (slabs) reflected by maximums of the density contrast and moved under continental margin and island arcs. However the subduction was not constant in time and periodically was interrupted by kickbacks and gaps of subducting slabs under influence of rifting and transform-shift processes. In time the rifts and attendant their shifts have been displaced in a direction from autochthonous to allochthonous segments: in the North East Asia from North Asian Craton to North American plate, on the Eastern Asia – from the continent to Pacific, and on the South East Asia – from the South China Sea Plate to Yangtze plate. Conclusions. Revealed features of a structure and geodynamic evolution of convergent zones are universal characteristics of upper rigid layers of the Earth (crust and lower lithosphere) moved above subcrustal viscous layer and astenosphere under influence of the oscillation tensions, caused, most likely, by deviation of the Earth rotation parameters. In all of four areas identical sequence of subductional and rifting processes has been revealed. A subduction accompanied by thrusting of the upper crust layer over autochthonous segments was repeatedly interrupted by gaps of crustal and lithosphere sheets and a formation of stretch-shift structures. Sudduction is not main and defining process in the convergent boundaries of lithosphere plate, bat represents a privet element of the oscillatory tectogenesis.
About the Author
A. M. PetrishchevskyRussian Federation
Alex M. Petrishchevsky
4 Sholom Aleikhem st., Birobidzhan 679016
References
1. Akinin V.V. (2012) Late Mesozoic and Cenozoic magmatism, and reformation of the low crust in the Northern margin of Pacific. Diss. … doct. geol.-min. sci. Moscow, IGEM RAN Publ., 35 p. (In Russ.)
2. Balk P.I., Dolgal’ A.S., Michurin A.V. (2011) Common probabilistic-deterministic approach to interpreting of gravimetrics, magnetic and geo-electric data. Dokl. RAN, 438(4), 532-537. (In Russ.)
3. Belyi V.F. (1981) Structural-formational map of the Okhotsk-Chukotskiy volcanic belt. Scale 1 : 1 500 000. Explanetary note. Magadan, 57 p. (In Russ.)
4. Bogdanov N.A., Chekhovich V.D. (2002) About collision of the West-Kamchatka and Sea of Okhotsk plate. Geotektonika, (1), 72-85. (In Russ.)
5. Cai G., Wan Zh., Yao Y., Zhong L., Zheng H., Kapsiotis A., Zhang C. (2019) Mesozoic Northward Subduction Along the SE Asian Continental Margin Inferred from Magmatic Records in the South China Sea. Minerals, 598(9), 2-25.
6. Didenko A.N., Kaplun V.B., Malyshev Yu.F. et al. (2010) Deep structure and metallogeny of the Eastern Asia. Vladivostok, Dal’nauka Publ., 332 p. (In Russ.)
7. Emel’yanova T.A., Lelikov E.P. (2010) Miocene-Pleistocene volcanism of deep-water hollows of the Japan and Sea of Okhotsk seas. Tikhookean. Geol., 29(2), 58-69. (In Russ.)
8. Emel’yanova T.A., Lelikov E.P. (2016) Geochemistry and petro-origin of Early Mesozoic–Late Cenozoic volcanics of the Sea of Okhotsk and Japan seas. Geokhimiya, (6), 522-535. (In Russ.)
9. Emel’yanova T.A., Petrishchevskii A.M., Izosov L.A., Li N.S., Pugachev A.A. (2020) Late Mesozoic–Cenozoic Stages of Volcanism and Geodynamics of the Sea of Japan and Sea of Okhotsk. Petrology, 28(5), 418-430 (translated from Petrologiya, 28(5), 468-481). https://doi.org/10.1134/S0869591120050021
10. Evans G.C. (1933) Application of Poincare’s sweeping-out process. Mathematic, 19, 457-461.
11. Filatova N.I. (2008) Specifics of a magmatism of marginalseas basins of shear nature, Western periphery of Pacific. Petrologiya, 16(5), 480-500. (In Russ.)
12. Fu D., Huang B., Timothy M., Kusky T.M., Li G., Wilde A.S., Zhou W.X., Yu Y. (2018) A Middle Permian Ophiolitic Mélange Belt in the Solonker Suture Zone, Western Inner Mongolia, China: Implications for the Evolution of the Paleo‐Asian Ocean. Tectonics, 37(5), 1292-1320.
13. Geodinamics, magvatism, and metallogeny of the Eastern Russia. (2006) (Ed. A.I. Khanchuk). B. 1. Vladivostok, Dal’nauka Publ., 572 p. (In Russ.)
14. Gordienko I.V. (1994) Paleozoic geodynamic evolution of the Mongol-Okhotsk fold belt. J. Southeast Asian Earth Sci., 9(4), 429-433.
15. Hacker B., Ratschbacher L., Liou J. (2004) Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. London. Geol. Soc., Spec. Publ., (1), 157-175.
16. Huang J., Zhao D. (2006) High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111, B09305, 1-21. https://doi.org/10.1029/2005JB004066
17. Izosov L.A., Konovalov Yu.I., Emel’yanova T.A. (2000) Problems of geology and diamond bearing of the continent-ocean transition zone (Japan and Yellow Seas Region). Vladivostok, Dal’nauka Publ., 326 p. (In Russ.)
18. Khanchuk A.I., Didenko A.N., Popeko L.I., Sorokin A.A., Shevchenko B.F. (2015) Structure and evolution of the Mongolo-Olhotsk orogenic belt. The Central Asian orogenic belt. Geology, evolution, tectonics and models. (Ed. A. Krëner). Stuttgart, Borntraeger Sci. Publ., 211-234.
19. Khanchuk A.I., Ivanov V.V. (1999) Mesozoic-Cenozoic geodynamic states and gold ore-bearing of the Russian Far East. Geol. Geofiz., 40(9), 1635-1645. (In Russ.)
20. Khanchuk A.I., Martynov Yu.A. (2011) Tectonics and magmatism on the boundaries of sliding of oceanic and continental plates. Geological processes in the subduction, collision and sliding zones. Data of Russian conference with international participation. Vladivostok, Dal’nauka Publ., 45-49. (In Russ.)
21. Khanchuk A.I., Petrishchevskii A.M. (2007) Astenosphere and plates of the North-East Asia. Dokl. RAN, 412(5), 689-693. (In Russ.)
22. Khanchuk A.I., Ratkin V.V., Ryazantseva M.D., Golozubov V.V., Gonokhova N.G. (1995) Geology and useful deposits of the Primorsky area: Sketch. Vladivostok, Dal’nauka Publ., 66 p. (In Russ.)
23. Kovalenko D.V. (2001) Model of tectonic accretion of the island terrains of Kamchatka and Southern Koryakia. Geotektonika, (5), 76-91. (In Russ.)
24. Kulakov I.Yu., Dobretsov N.L., Bushenkova N.F., Yakovlev A.V. (2011) The shape of slabs in subduction zones beneath the Kuril-Kamchatka and Aleut arcs from regional tomography data. Geol. Geofiz., 52(6), 830-851. (In Russ.)
25. Kulinich R.G., Valitov M.G. (2011). Depth and types of the Japan Sea crust from the marine and satellite gravimetrics. Tikhookean. Geol., 30(6), 3-13. (In Russ.)
26. Li B., Atakan K., Sorensen M.B., Havskov J. (2015) Stress pattern of the Shanxi rift system, North China, inferred from the inversion of new focal mechanisms. Geophys. J. Int., 201(2), 505-527.
27. Liu X.C., Li S.Z., Bor-Ming J. (2015) Tectonic evolution of the Tongbai-Hong’an orogen in central China: From oceanic subduction/accretion to continent-continent collision. Sci. China. Earth Sci., 58(9), 1477-1496.
28. Liu X., Zhao D., Li S., Wei W. (2017) Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet. Sci. Lett., 464, 166-174.
29. Lunina O.V., Gladkov A.C., Nevedova N.N. (2009) Rift basins of the Near Baikal Area: Tectonic structure and the history evolution. Novosibirsk, Geo Publ., 164 p.
30. Martinov Yu.A., Golozubov V.V., Khanchuk A.I. (2016) Mantle diapirism in zones of lithospheric-plate convergence (Sea of Japan). Geol. Geofiz., 57(5), 947-961. (In Russ.)
31. Martinov Yu.A., Khanchuk A.I. (2013) Cenozoic volcanism of the East Sikhote-Alin: Results and perspectives of petrologic researches. Petrologiya, 21(1), 94-108. (In Russ.)
32. Mats V.D., Ufimtsev G.F., Nandelbaum V.V., Alakshin A.M., Pospeev A.V. (2001) Cenozoic of the Baikal rift basin. Novosibirsk, Geo Publ., 251 p.
33. Morley C.K. (1989) Extension, Detachments, and Sedimentation in Continental Rifts (with particular reference to East Africa). Tectonics, 8(6), 1175-1192.
34. Morley C.K., Wescott W.A., Stone D.M., Happer R.M., Wigger S.T., Karanja F.M. (1992) Tectonic evolution of the northern Kenyan Rift. J. Geol. Soc., 149, 333-348.
35. Petrishchevskii A.M. (2016a) Common features of deep structure of the Western Pacific margins (North-East Asia and Australia). Geotektonika, (6), 87-104. (In Russ.)
36. Petrishchevskii A.M. (2013a) Gravity method for evaluation of rheological properties of the crust and uppermost mantle (in convergent and plume structures of the North-East Asia). Мoscow, Nauka Publ., 192 p. (In Russ.)
37. Petrishchevskii A.M. (2013b) Gravity models of double-layer collision of the lithosphere plates on the North-East Asia. Geotektonika, (6), 60-83. (In Russ.)
38. Petrishchevskii A.M. (2016b) Rheological and geothermic characteristics of the Sea of Okhotsk plume. Izv. Tomskogo politekhnicheskogo universiteta. Inzhiniring Georesursov, 327(2), 65-76. (In Russ.)
39. Petrishchevskii A.M. (2011) Rheological model of the South Sikhote-Alin crust (from gravimetric data). Tikhookean. Geol., 30(3), 50-65. (In Russ.)
40. Petrishchevskii A.M. (2019) Rift structures and oil-gas bearing in rheological gravity models of the crust. Geofizika, (4), 42-51. (In Russ.)
41. Petrishchevskii A.M. (2008) Viscous layer on the crust-mantle boundary on the Far East. Geotektonika, (5), 37-48. (In Russ.)
42. Petrishchevskii A.M. (2020). On practical consequence from theorems of uniqueness and equivalence of the invert problems of gravity potential. Geofizika, (4), 98-111. (In Russ.)
43. Petrishchevskii A.M. (2021) Crust and upper mantle in the convergent area of the Central Asia and Pacific folded belt. Tikhookean. Geol., 40(5), 16-32. (In Russ.)
44. Petrishchevskii A.M., Emel’yanova T.A., Izosov L.A. (2021) Age relations between the rifting, subduction and plume processes on the Eastern margin of Asia. Vestnik KRAUNTs. Nauki o Zemle, (4), 52, 22-45. (In Russ.)
45. Petrishchevskii A.M., Yushmanov Yu.P. (2021) Density contrast, deep structure, rheology and menallogeny of the crust and upper mantle of Verkhoyano-Kolimskit Region. Lithosphere (Russia), 21(4), 491-516.
46. Quin X., Zhao B., Lia F., Zhang B., Wang H., Zhang R., He J., Chen X. (2019) Deep structural research of the South China Sea: Progresses and directions. China Geol., (4), 530-540.
47. Ren J., Tamaki K., Li. S., Junxia Z. (2002) Late Mesozoic and Cretaceous rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344, 175-205.
48. Rodnikov A.G. (1979) Island arcs of the western part of Pacific. Results of recearches on international geophysical projects. Moscow, Nauka Publ., 152 p. (In Russ.)
49. Seminskii K.Zh. (2009) Main factors of the basins and fractures evolution of the Baikal Rift Zone. Geotektonika, (6), 52-69. (In Russ.)
50. Shakhtirov V.G. (1997) Tenkinskiy deep fault: tectonic position, infrastructure, ore bearing. Geological structure, magmatism and useful deposites of the North East Asia. Magadan, SVKNII DVO RAN Publ., 62-64. (In Russ.)
51. Shu L.S., Faure M., Yu J.H., Jahn B.M. (2011) Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambr. Res., 187(3-4), 263-276.
52. Struzhkov S.F., Konstantinov M.M. (2005) Metallogeny of gold and silver of the Okhotsk-Chukotskiy volcanic belt. Moscow, Nauchnyi Mir Publ., 320 p. (In Russ.)
53. Tectonics, geodynamics, and metallogeny of the Sakha republic aria (Yakutiya). (2001) Moscow, Nauka / Interperiodika Publ., 571 p. (In Russ.)
54. Tikhomirov P.L. (2018) Cretaceous continent-marginal magmatism of the North East Asia and the nature questions of the giant Phanerozoic provinces of silicaacid volcanism. Diss. … doct. geol.-min. nauk. Moscow, MGU Publ., 43 p. (In Russ.)
55. Til’man S.M., Bogdanov N.A. (1992) Tectonic map of the North-East Asua. Scale 1 : 1 500 000. Moscow, Geodesy and survey committee MPR RF Publ. (In Russ.)
56. Wang Y., Zhang F., Fan W., Zhang G., Chen S., Cawood P.A., Zhang A. (2010) Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29, TC6020, 1-16.
57. Wu J., Suppe J. (2015) Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. J. Earth Sci., 29(6), 1304-1318.
58. Wu Y.B., Zheng Y.F. (2013) Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hongʼan–Dabie–Sulu orogenic belt in central China. Gondw. Res., 23, 1402-1428.
59. Xu X.-W., Ma X.-Y., Deng Q.-D. (1993) Neotectonic activity along the Shanxi rift system, China. Tectonophysics, 219, 305-325.
60. Xuan S., Jin S., Chen Y. (2020) Determination of the isostatic and gravity Moho in the East China Sea and its implications. J. Asian Earth Sci., 187, 104098, 1-11.
61. Yang C., Han D., Yang C., Yang Y., Sun J., Yu F. (2020) Mesozoic basin evolution of the East China Sea Shelf and tectonic system transition in Southeast China. Geol. J., 55, 239-252.
62. Yanshin A.L., Khain V.E., Gatinskii Yu.G. (1984) Main problems of the Asian tectonics. 27 MGK. Doklady, 5. Moscow, Nauka Publ., 3-10.
63. Yushmanov Yu.P., Petrishchevskii A.M. (2004) Tecto nics, deep structure and metallogeny of the coastal zone of Southern Sikhote Alin. Vladivostok, Dal’nauka Publ., 111 p. (In Russ.)
Review
For citations:
Petrishchevsky A.M. Subduction and rifting ‒ reflect of oscillatory tectonic processes on boundaries of the lithosphere segments in the probable-deterministic gravity models. LITHOSPHERE (Russia). 2024;24(6):943-961. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-943-961