Morphogenetic varieties of iron oxyhydroxides in shimmering smokers-diffusers of the Rainbow hydrothermal field (36°13′ N, 33°54′ W, Mid-Atlantic Ridge): LA-ICP-MS data for the development of halmyrolysis theory
https://doi.org/10.24930/2500-302X-2024-24-5-864-885
Abstract
Research subject. Iron oxyhydroxides covering and replacing the chimneys of shimmering water smokers-diffusers of the Rainbow hydrothermal field (MAR). Aim. To identify features of the concentration and associations of chemical elements in varieties of iron oxyhydroxides to recognize patterns of geochemical differentiation under conditions of halmyrolysis of sulfide chimneys-diffusers. Materials and methods. Samples were collected during a dive to a depth of 2300 m using the manual manipulator of the Mir-2 manned vehicle (travel No. 50, research vessel Akademik Mstislav Keldysh, 2005). Varieties of iron ohyhydroxides were identified using electron microscopes (REMMA-202М with LZ-5 Link system, Tescan Vega 3 sbu with an Oxford Instruments X-act energy-dispersive analyzer, and Jeol Superprobe 733 with an EDA Oxford Instruments INCAx-sight) and a powder X-ray diffractometer (SHIMADZU XRD-6000, CuK-α radiation with monochromator). Further, a mass spectrometry with inductively coupled plasma and laser ablation (LA-ICP-MS) analysis was conducted at the South Urals Federal Scientific Center of Mineralogy and Geoecology, Ural Branch of the Russian Academy of Sciences. Results. Microlayered goethite aggregates containing admixtures of barite, calcite, aragonite, native sulfur, covellite, sphalerite, and an X-ray amophoric oxyhydroxide phase of iron cover the shimmering diffusers. Towards the inner parts of the chimney walls, they are replaced by pseudomorphs of lepidocrocite after pyrite and pyrrhotite, and then by radial and bacteriomorphic crustifications of lepidocrocite. The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) showed that goethite varieties have the increased contents of Zn and Co associated with other elements of medium-temperature hydrothermal fluids (Cd, Mn, Ni, Ga, Sn, Pb and Sb) in the absence of significant concentrations of a high-temperature hydrothermal association (Se, Bi, Te). The role of elements of seawater association (Mg, Na, K, Sr, U, V, As, Mo, Ni, P, B, W, Cs, REE) decreases from the surface layered goethite aggregates to crustification varieties of lepidocrocite. Different scenarios of accumulation under conditions of sulfide halmyrolysis and precipitation on local reduction barriers are proposed for elements with different valences (U, V, Mo, As, Cr, Eu). It is assumed that some of the microelements (Sr, V, As, P, REE) found in goethite are products of sorption on iron hydroxides or are part of invisible Fe-Ca hydroxyphosphates. Conclusion. The influence of sulfide halmyrolysis on the differentiation of chemical elements has been revealed.
Keywords
About the Authors
V. V. MaslennikovRussian Federation
Miass 456317
A. Yu. Lein
Russian Federation
36 Nakhimovsky av., Moscow 117997
N. R. Ayupova
Russian Federation
Miass 456317
A. S. Tseluyko
Russian Federation
Miass 456317
D. S. Artemyev
Russian Federation
Miass 456317
V. A. Kotlyarov
Russian Federation
Miass 456317
References
1. Anantharamaiah P.N., Pattayil J. (2017) Effect of size and site preference of trivalent non-magnetic metal ions (Al3+, Ga3+, In3+) substituted for Fe3+ on the magnetostructive properties of sintered CoFe2O4. J. Phys. D Appl. Phys., 50, 435005.
2. Ayupova N.R., Melekestseva I.Y., Maslennikov V.V., Tseluyko A.S., Blinov I.A., Beltenev V.E. (2018) Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals. Russia). Sediment. Geol., 367, 164-174. Barrett T.J., Jarvis I., Jarvis K. (1990) Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern Explorer Ridge. Geology, 18, 583-586. Bogdanov Yu.A., Bortnikov N.S., Vikent’ev I.V. et al. (1997)
3. A new type of modern mineral-forming system: “black smokers” of the hydrothermal field 14°45’ N, Mid-Atlantic Ridge. Geol. Ore Depos., 39(1), 68-90. (In Russ.)
4. Bogdanov Yu.A., Bortnikov N.S., Vikent’ev I.V. et al. (2002) Mineralogical and geochemical features of hydrothermal sulfide ores of the Rainbow field associated with serpentinites, MAR (36° 04’ N). Geol. Ore Depos., 44(6), 510-542.
5. Bogdanov Yu.A., Lein A.Yu., Lisitsyn A.P. (2015) Polymetallic ores in the rifts of the Mid-Atlantic Ridge (15–40° N): mineralogy, geochemistry, genesis. Moscow, GEOS Publ., 256 p. (In Russ.)
6. Bogdanov Yu.A., Lisitsyn A.P., Sagalevich A.M., Gurvich E.G. (2006) Hydrothermal ore genesis of the ocean floor. Moscow, Nauka Publ., 527 p. (In Russ.)
7. Bogdanov Yu.A., Sagalevich A.M., Gurvich E.G. et al. (1999) Underwater geological studies of the Rainbow hydrothermal field (Mid-Atlantic Ridge). Dokl. RAN, 365(5), 657-662.
8. Borodaev Yu.S., Mozgova N.N., Gablina I.F. et al. (2004) Zonal pipes of “black smokers” from the Rainbow hydrothermal field (MAR 36°14′ N). Vestnik MGu. Ser. 4. Geol., 3, 35-48. (In Russ.)
9. Bruemmer G.W., Gerth J., Tiller K.G. (1988) Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Eur. J. Soil Sci., 39, 37-52.
10. Butler I.B., Nesbitt R.W. (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett., 167, 335-345.
11. Cook N.J., Ciobanu C.L., Pring A., Skinner W., Shimizu M., Danyushevsky L., Saini-Eidukat B., Melcher F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta, 73, 4761-4791.
12. Dekov V., Boycheva T., Hålenius U., Petersen S., Billström K., Stummeyer J., Kamenov G., Shanks W. (2011) Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45ʹ N, Mid-Atlantic Ridge). Chem. Geol., 286, 169-184.
13. Dubinin A.V. (2001) Geochemistry of iron-calcium hydroxophosphates in pelagic sediments: Origin and compositional evolution in the course of diagenesis. Geochem. Int., 39, 585-596.
14. Dubinin A.V. (2006) Geochemistry of rare earth elements in the ocean. Moscow, Nauka Publ., 364 p. (In Russ.)
15. Edmonds H.N., German C.R. (2004) Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 68, 759-772.
16. Edwards K.J. (2004) Formation and Degradation of Seafloor Hydrothermal Sulfide Deposits. Spec. Pap. Geol. Soc. Amer., 379, 83-96.
17. Feely R.A., Ttefry J.H., Massoth G.J., Metz S. (1991) A comparison of the scavenging of phosphate and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific Ocean. Deep-Sea Res., 38, 617-623.
18. Fouquet Y., Charlou J.l., Ondréas H. et al., (1997) Discovery and first submersible investigations on the Rainbow Hydrothermal Field on the MAR (36°14ʹ N). EOS (Transactions, American Geophysical union), 78, F832.
19. Gablina I.F., Borodaev Yu.S., Mozgova N.N., Bogdanov Yu.A., Kuznetsova O.Yu., Starostin V.I., Fardust F. (2004) Tetragonal form of Cu2-xS in modern hydrothermal Rainbow ores (Mid-Atlantic Ridge, 36°14′ N). New data on minerals, 39, 102-109. (In Russ.)
20. Georgieva M.N., Little C.T.S., Herrington R.J., Boyce A.J., Zerkle A.L., Maslennikov V.V., EIMF, Glover A.G. (2022) Sulfur isotopes of hydrothermal vent fossils and insights into microbial sulfur cycling within a lower Paleozoic (Ordovician-early Silurian) vent community. Geobiology, 20(4), 465-478.
21. German C.R., Colley S., Palmer M.R., Khripounoff A., Klinkhammer G.P. (2002) Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep. Sea Res. Pt I. Oceanogr. Res. Pap., 49, 1921-1940.
22. German Ch.R., Klinkhammer G.P., Rudnicki M.D. (1996) The Rainbow hydrothermal plume, 36°15′N, MAR. Geophys. Res. Lett., 23(21), 2979-2982.
23. Gurvich E.G. (2006) Metalliferous Sediments of the World Ocean, Springer, Berlin, Germany, 430 p.
24. Halbach P., Blum N., Münch U., Plüger W., Garbe-Schönberg D., Zimmer M. (1998) Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Depos., 33, 302-309.
25. Halbach P.E., Fouquet Y., Herzig P. (2003) Mineralization and compositional patterns in deepsea hydrothermal systems. Energy and Mass Transfer in Marine hydrothermal. (Eds P.E. Halbach, V. Tunnicliffe, J.R. Hein). Berlin, Dahlem Univ. Press, 85-122.
26. Hannington, M.D. (1993) The formation of atacamite during weathering of sulfides on the modern seafloor. Canad. Mineral., 31, 945-956.
27. Hannington M.D., Thompson G., Rona P.A., Scott S.D. (1988) Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature, 333, 64-66.
28. Hekinian R., Hoffert M., Larque P., Cheminee J.L., Stoffers P., Bideau D. (1993) Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific rise axial and off-axial regions. Econ. Geol., 88, 2099-2121.
29. Herzig P.M., Hannington M.D., Scott S.D., Maliotis G., Rona P.A., Thompson G. (1988) Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge. Econ. Geol., 86, 1747-1755.
30. Hrischeva E., Scott S.D. (2007) Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavoursegment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta, 71, 3476-3497.
31. Lalou C., Brichet E. (1980) Anomalously high uranium contents in the sediment under Galapagos hydrothermal mounds. Nature, 284, 251-253.
32. Lein A.Y., Bogdanov Y.A., Maslennikov V.V., Li S., Ulyanova N.V., Maslennikova S.P., Ulyanov, A.A. (2010) Sulfide minerals in the Menez Gwen nonmetallic hydrothermal field (Mid-Atlantic Ridge). Lithol. Miner. Resour., 45, 305-323. Lein A.Yu., Cherkashev G.A., Ulyanov A.A. et al. (2003) Mineralogy and geochemistry of sulfide ores from the Logachev-2 and Rainbow fields: similarities and differences. Geochemistry, 3, 304-328.
33. Lein A.Yu., Kravchishina M.D. (2021) Geochemical cycle of barium in the ocean. Lithology and Minerals, 4, 293-310.
34. Li X., Wang J., Chu F., Wang H., Li Z., Yu X., Bi D., He Y. (2016) Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges. J. Mar. Syst., 180, 191-196.
35. Lyutkevich A.D., Gablina I.F., Dara O.M., Yapaskurt V.O., Shcherbakov V.D., Somov P.A. (2022) Mineral Phases of Zinc in Ore-Bearing Sediments of the Pobeda Hydrothermal Cluster (17°07ʹ45ʹʹ–17°08ʹ70ʹʹ N, MAR). Lithol. Miner. Resour., 57, 404-420.
36. Martin F., Petit S., Decarreu A., Ildefonse P., Graubit O., Beziat D., de Parseval P., Noa Y. (1998) Ga/Al substitutions in synthetic kaolinites and smectites. Clay Miner., 33, 231-241. Martinez-Ruiz F., Paytan A.M., Gonzalez-Muñoz T., Jroundi F., Abad M.M., Lam P.J., Bishop K.B., Horner T.J., Morton P.L., Kastner M. (2019) Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chem. Geol., 511, 441-451.
37. Maslennikov V.V. (2006) Lithogenesis and massive sulfide ore formation. Miass, IMin UrO RAN Publ., 384 p. (In Russ.) Maslennikov V.V. (2012) Morphogenetic types of sulfide deposits as a reflection of the volcanic regime. Lithosphere (Russia), 5, 96-113. (In Russ.)
38. Maslennikov V.V. (1999) Sedimentogenesis, halmyrolysis and ecology of pyrite-bearing paleohydrothermal fields (using the example of the Southern Urals). Miass, Geotur Publ., 348 p. (In Russ.)
39. Maslennikov V.V., Ayupova N.R., Maslennikova S.P., Tseluiko A.S. (2016) Hydrothermal biomorphoses of pyrite deposits: microtextures, trace elements and detection criteria. Ekaterinburg, RIO UrO RAN Publ., 388 p. (In Russ.) Maslennikov V.V., Cherkashov G.A., Firstova A.V., Ayupova N.R., Beltenev V.E., Melekestseva I.Yu., Artemyev D.A., Tseluyko A.S., Blinov I.A. (2023) Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.70 N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data. Minerals, 4, (4).
40. Maslennikov V.V., Maslennikova S.P., Lein A.Yu. (2019) Mineralogy and geochemistry of ancient and modern black smokers. Moscow, Russian Academy of Sciences, 832 p. (In Russ.)
41. Maslennikov V.V., Zaikov V.V. (1991) On the destruction and oxidation of sulfide hills at the bottom of the Ural paleoocean. Dokl. AN SSSR, 319(6), 1434-1437. (In Russ.)
42. Melekestseva I., Maslennikov V.V., Tret’yakov G., Maslennikova S.P., Danyushevsky L., Large R., Beltenev V., Khvorov A. (2020) TE geochemistry of sulfides from the Ashadze-2 hydrothermal field (12°5.80 N. Mid-Atlantic Ridge): Influence of host rocks formation conditions or seawater? Minerals, 10, 743.
43. Meng X., Jin X., Li X., Chu F., Zhang W., Wang H., Zhu J., Li Z. (2021) Mineralogy and geochemistry of secondary minerals and oxyhydroxides from the Xunmei hydrothermal field, Southern Mid-Atlantic Ridge (26°S): Insights for metal mobilization during the oxidation of submarine sulfides. Mar. Geol., 442, 106654.
44. Mikhailichenko A.I., Miklin E.B., Patrikeev Yu.B. (1987) Rare earth metals. Moscow, Metallurgiya Publ., 232 p. (In Russ.)
45. Mills R.A., Elderfield H. (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound. 26°NMid-Atlantic Ridge. Geochim. Cosmochim. Acta, 59, 3511-3524.
46. Mills R.A., Thomson J., Elderfield H., Hinton R.W., Hyslop E. (1994) Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 124, 35-47.
47. Mitra A., Elderfield H., Greaves M.J. (1994) Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar. Chem., 47, 217-236.
48. Monecke T., Petersen S., Hannington M.D., Grant H., Samson I.M. (2016) The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions. Econ. Geol., 18, 245-306.
49. Mozgova N.N., Borodaev Yu.S., Gablina I.F. Cherkashev G.A., Stepanova T.V. (2005) Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide edifices. Lithol. Miner., 4, 339-367.
50. Parson L., Fouquet Y., Ondréas H., Barriga F.J.A.S., Relvas J.M.R., Ribeiro A., Charlou J.L., German C. (1997) Non-Transform discontinuity settings for contrasting hydrothermal systems on the MAR-Rainbow and FAMOUS at 36º14’ and 36º34’N. EOS Abstract, 78, 832. Popoola S.O., Han X., Wang Y., Qiu Z., Ye Y., Cai Y. (2019) Geochemical investigations of Fe-Si-Mn oxyhydroxides deposits in Wocan hydrothermal field on the slowspreading Carlsberg Ridge, Indian Ocean: Constraints on their types and origin. Minerals, 9, 19.
51. Ridley W.I. (2012) Weathering processes. Volcanogenic Massive Sulfide Occurrence Model. (Eds W.C. Shanks, R. Thurston). Report 2010–5070-C, U.S. Geological Survey Scientific Investigations: Reston, VA, USA, 195-201. Rudnicki M., Elderfield H. (1993) A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 57, 2939-2957.
52. Schwertmann U., Taylor R.M. (1989) Iron oxides. Minerals in soil environments. (Еds J.B. Dixon, S.B. Weed). Soil Science Society America, Madison, 379-438.
53. Smirnov V.I. (1981) Correlation methods in paragenetic analysis. Moscow, Nedra Publ., 174 p. (In Russ.)
54. Sverjevsky D.A. (1984) Europium redox equilibria in agueous solution. Eart Planet. Sci. Lett., 67, 70-78.
55. Toner B.M., Rouxel O., Santelli C.M., Edwards K.J. (2008) Sea-floor weathering of hydrothermal chimney sulfides at the East Pacific rise 9°N: Chemical speciation and isotopic signature of Iron using X-ray absorption spectroscopy and laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta Suppl., 72, A951.
56. Vikentyev I.V., Bortnikov N.S., Bogdanov Yu.A. et al. (2000) Mineralogy of hydrothermal deposits of the Rainbow field in the Azores region (Atlantic). Metallogeny of ancient and modern oceans – 2000. Miass, UrO RAN Publ., 103-109.
57. Vodyanitsky Yu.N. (2010) Iron hydroxides in soils (literature review). Soil Sci., 11, 1341-1352.
Review
For citations:
Maslennikov V.V., Lein A.Yu., Ayupova N.R., Tseluyko A.S., Artemyev D.S., Kotlyarov V.A. Morphogenetic varieties of iron oxyhydroxides in shimmering smokers-diffusers of the Rainbow hydrothermal field (36°13′ N, 33°54′ W, Mid-Atlantic Ridge): LA-ICP-MS data for the development of halmyrolysis theory. LITHOSPHERE (Russia). 2024;24(5):864-885. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-5-864-885