Preview

LITHOSPHERE (Russia)

Advanced search

Mineral composition of xenoliths of transformed tholeiitic basalts in ore-hosting rocks of the Rudnogorskoe iron ore deposit, Eastern Siberia

https://doi.org/10.24930/2500-302X-2024-24-5-848-863

Abstract

Research subject. Variously-altered tholeiitic basalt xenoliths in ore-hosting rocks from the Rudnogorskoe iron ore deposit, the Angaro-Ilim region of Eastern Siberia. Aim. To identify the sequence of mineral transformations during the formation of magnetite ores. Materials and methods. The mineral composition of weakly-altered and hematitized xenoliths of tholeiitic basalts in skarned rocks and relics of basaltic hyaloand lithoclasts in varying degrees magnetitized volcaniclastites were studied. Minerals were identified using a powder X-ray diffractometer with the determination of the quantitative ratios of mineral phases by SHIMADZU XRD-6000 and DRON-2.0 diffractometers and using the microscopic (Olympus BX51) and electron microscopic (Tescan Vega 3 sbu with an Oxford Instruments Xact energy-dispersive analyzer) and IR spectroscopic (Spectrum One IR Fourier-spectrometer and a Multiscope microscope, PerkinElmer) research methods. Results. In xenoliths of weakly-altered tholeiitic basalts, volcanic glass is smectitized and partially replaced by secondary aggregates of chlorite and carbonate. In hematitized xenoliths, the smectite-hematite mineral association contains skarn epidote and garnet. Smectite aggregates, partially transformed into magnetite mass, are present in the magnetitized volcaniclastites. The studied smectites are classified as saponite according to the obtained values of basal reflections d001 in the range of 14.76–15.23 Å and calculated crystal chemical formulas. The differences in the morphology, chemical composition, and IR spectrometric characteristics of smectites reflect the varying degrees of transformation of the tholeiitic basalts in multi-stage ore-forming processes.

About the Authors

E. V. Shepel
Institute of Mineralogy, South ural Federal Scientific Center for Mineralogy and Geoecology
Russian Federation

Miass 456317



N. R. Ayupova
Institute of Mineralogy, South ural Federal Scientific Center for Mineralogy and Geoecology
Russian Federation

Miass 456317



A. S. Tselyuko
Institute of Mineralogy, South ural Federal Scientific Center for Mineralogy and Geoecology
Russian Federation

Miass 456317



References

1. Almukhamedov A.I., Medvedev A.Ya., Kirda N.P. (1999) Comparative analysis of geodynamics of Permian magmatism in Eastern and Western Siberia. Geologiya i Geofizika, 40(11), 1575-1587. (In Russ.)

2. Derbikov I.V. (1964) On the problem of the genesis of the iron-skarn deposits of Western Siberia (on the volcanogenic-sedimentary genesis of some deposits of the Kaz group). Tr. SNIIGGiMS, 35, 82-100. (In Russ.)

3. Drits V.A., Kossovskaya A.G. (1990) Clay minerals: smectites, mixed-layer formations. Moscow, Nauka Publ., 214 p. (In Russ.)

4. Fon-der-Flaas G.S. (1992) Tuffizpts of subalkaline basaltoids and their role in the formation of iron-bearing diatremes of the south of the Siberian platform. Izv. RAN. Ser. geol., 8, 98-112. (In Russ.)

5. Fon-der-Flaas G.S., Permyakov A.A. Speshilov V.M. (1992) Rudiogorskoye magnetite deposit magmatism, structure, ore bearing capacity. Geol. Rudn. Mestorozhd., 2, 51-67). (In Russ.)

6. Fujita S., Suzuki K., Shibasaki Y. (2002) The mild hydrothermal synthesis of hydrogrossular from coal ash. J. Mater. Cycles Waste Manag., 4, 41-45. https://doi.org/10.1007/s10163-001-0055-x

7. Kalugin A.S., Kalugina T.S., Ivanov V.I. (1981) Iron ore deposits of Siberia. Novosibirsk, Nauka Publ., 238 p. (In Russ.)

8. Kalugin I.A., Tretyakov G.A., Fon-der-Flaas G.S. (1994) The origin of iron ores in traps: the formation of an orebearing diatreme with a root zone of interaction between basalt magma and evaporites. Novosibirsk, OIGGM, 45 p. (In Russ.)

9. Kholodnov V.V., Bushlyakov I.N. (2002) Halogens in endogenous ore formation. Yekaterinburg, UrO RAN, 391 p. (In Russ.)

10. Malitch N.S., Mironyuk E.P., Tuganova E.V. (1999) Geological map of the Siberian platform and adjacent territories. M-b 1 : 1 500 000. Saint Petersburg, VSEGEI. (In Russ.)

11. Mazurov M.P., Grishina S.N., Titov A.T., Shikhova A.V. (2018) Evolution of ore-metasomatic processes in large scarn iron ore deposits of the trap formation of the Siberian platform. Petrologiya, 26(3), 265-281. (In Russ.) https://doi.org/ 10.7868/S0869590318030044

12. Momdzhi G.S., Arkhipenkova A.Ya., Kozlov V.F. (1976) The platform magnomagnetite formation (on the example of the Angara iron ore province). Moscow, Nedra Publ., 171 p. (In Russ.)

13. Neumann E.-R., Svensen H., Polozov A.G., Hammer Ø. (2017) Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin. East Siberia. Miner. Dep., 52, 1205-1222. https://doi.org/10.1007/s00126-017-0717-9

14. Nikulin V.I., Fon-der-Flaas G.S., Baryshev A.S. (1991) Explosive volcanic basaltoid ore-forming system (Angarsk iron ore province. Geol. Rudn. Mestorozhd., 3, 26-40. (In Russ.)

15. Oleynikov B.V., Savinov V.T., Pogudina M.A. (1973) The main types of trap intrusions of the Middle Paleozoic and Upper Paleozoic – Lower Mesozoic trap formations of the junction zone of the Tunguska and Vilyui syneclises. Geology and geochemistry of the basites of the eastern part of the Siberian platform. (Ed. by V.V. Koval’skii, B.V. Oleinikov). Moscow, Nauka Publ., 4-76. (In Russ.)

16. Pichler T., Ridley W.I., Nelson E. (1999) Low-temperature changes in excavated volcanics of the Southern Chile ridge: additional information on the early stages of seabed weathering. Mar. Geol., 159, 155-177.

17. Polozov A.G., Svensen H.H., Planke S., Grishina S.N., Fristad K.E., Dougal J.A. (2016) The basalt pipes of the Tunguska Basin (Siberia, Russia): High temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 51-64.

18. Rudnik G.B. (1979) Effusive rocks. The geology of the ocean. (Ed. by P.L. Bezrukov). Vol. 1. Sedimentation and magmatism of the ocean. Moscow. Nauka Publ., 9-38. (In Russ.)

19. Rudnitsky V.F., Kuznetsov A.J. (2014) On the methods of ore deposition of the Estyuninsky skarnovo-magnetite deposit in the Middle Urals. Metallogeny of ancient and modern oceans – 2014. Miass, IMin UrO RAN, 91-94. (In Russ.)

20. Ryabov V.V., Simonov O.N., Snisar S.G. (2018) Fluorine and chlorine in apatites, micas and amphiboles of stratified trap intrusions of the Siberian platform. Geologiya i Geofizika, 59(4), 453-466.

21. Sharkov E.V., Tsvetkov A.A. (1987) Magmatic series of regions of active transition from the continent to the ocean and problems of the origin of the initial magmas. Petrology and Geochemistry of island arcs and marginal seas. (Ed. by O.A. Bogatikov). Moscow, Nauka Publ., 263-277. (In Russ.)

22. Soloviev S.G. (2011) Iron oxide-gold-copper and related deposits. Moscow, Nauchnyi mir, 472 p. (In Russ.)

23. Staudigel H., Hart S.R. (1983) Alteration of basaltic glass: Mechanism and significance for the oceanic crust – seawater budget. Geochim. Cosmochim. Acta, 47(3), 337-350. Vakhrushev V.A. (1981) Halite-magnetite ores of the Siberian platform. Geol. Rudn. Mestorozhd., 6, 100-104. (In Russ.)

24. Zhuk-Pochekutov K.A. (1986) Magnetite oolites of the Rudnogorsk iron ore deposit. Geol. Rudn. Mestorozhd., 4, 72-83. (In Russ.)


Review

For citations:


Shepel E.V., Ayupova N.R., Tselyuko A.S. Mineral composition of xenoliths of transformed tholeiitic basalts in ore-hosting rocks of the Rudnogorskoe iron ore deposit, Eastern Siberia. LITHOSPHERE (Russia). 2024;24(5):848–863. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-5-848-863

Views: 941


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)