Regular relations of the composition, structure and properties of crystals of hydrogen-containing compounds
https://doi.org/10.24930/1681-9004-2024-24-2-398-405
Abstract
Research subject. Crystals of hydrogen-containing compounds belonging to the superprotonic family. Aim. To obtain knowledge about regular relations between composition, atomic structure, real structure and physical properties of materials, with the purpose of elucidating processes occurring in condensed state and forming the basis for modification of known or obtaining new compounds. Materials and methods. Experimental data were obtained using a set of complementary physical methods, including structural analysis using X-rays, synchrotron radiation and neutrons, optical microscopy, and atomic force microscopy. Results. Experimental data on the atomic structure, real structure, and physical properties of superprotonic crystals, including systems of hydrogen bonds and their changes, were obtained. Conclusions. The physical properties of superprotonic crystals are significantly affected by hydrogen bonding systems and their changes, primarily by the formation of dynamically disordered hydrogen bonds with energetically equivalent positions of hydrogen atoms. When carrying out diagnostics of crystalline samples, account should be taken of their real structure, including the structure of surface layers and the presence of crystallization water. These factors may affect the measured physical parameters, the boundaries of existence of phases, the formation of a multiphase state under variations in temperature.
About the Authors
I. P. MakarovaRussian Federation
Irina P. Makarova
59 Leninsky av., Moscow 119333
E. V. Selezneva
Russian Federation
Elena V. Selezneva
59 Leninsky av., Moscow 119333
A. L. Tolstikhina
Russian Federation
Alla L. Tolstikhina
59 Leninsky av., Moscow 119333
R. V. Gainutdinov
Russian Federation
Radmir V. Gainutdinov
59 Leninsky av., Moscow 119333
References
1. Colomban P. (2019) Proton conductors and their applications: A tentative historical overview of the early researches. Solid State Ionics, 334, 125-144. https://doi.org/10.1016/j.ssi.2019.01.032
2. Dmitriev V.P., Chernyshov D.Yu., Dyadkin V.A., Makarova I.P., Leontyev I.N., Andronikova D.A., Bronvald Yu.A., Burkovsky R.G., Vakhrushev S.B., Filimonov A.V., Grigoriev S.V. (2018) Crystallography based on synchrotron radiation: experiments of russian users of the ESRF BM01 diffraction beam line.
3. J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 12(5), 395-407 (translated from Poverkhnostʼ. Rentgenovskie, sinkhrotronnye i neironnye issledovaniya, 12(5), 3-17). http://doi.org/10.1134/S1027451018030084
4. Dupuis A.-C. (2011) Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Progress in Materials Sci., 56, 289-327. http://doi.org/10.1016/j.pmatsci.2010.11.001
5. Gainutdinov R.V., Selezneva E.V., Makarova I.P., Vasil’-ev A.L., Tolstikhina A.L. (2021) Microscopic studies of the surface layer of (NH4)3H(SeO4)2 crystals subject to phase transformations. Surfaces and Interfaces, 23, 100952-1-9. https://doi.org/10.1016/j.surfin.2021.100952
6. Gainutdinov R.V., Tolstikhina A.L., Selezneva E.V., Makarova I.P. (2021) Combined microscopy of (NH4)3H(SeO4)2 ferroelastic crystals. Bull. Rus. Acad. Sci.: Physics, 85(8), 841-847 (translated from Izv. RAN. Ser. fiz., 85(8), 1082-1089). https://doi.org/10.3103/S1062873821080062
7. Gilli G., Gilli P. (2009) The nature of the hydrogen bond. IUCr book series. Oxford, Oxford University Press, 318 p.
8. Kreuer K.-D. (1996) Proton conductivity: materials and applications. Chem. Mater., 8, 610-641. https://doi.org/10.1021/cm950192a
9. Makarova I.P. (1993) Thermal vibrations of atoms and phase transition in RbHSeO4 and NH4HSeO4 single crystals. Acta Cryst. B, 49, 11-18. http://doi.org/10.1107/S010876819200613X
10. Makarova I.P. (2015) Superprotonics – crystals with rearranging hydrogen bonds. Physics of the Solid State, 57(3), 442-449 (translated from Fizika Tverdogo Tela, 57(3), 432-439). https://doi.org/10.1134/S1063783415030117
11. Makarova I., Grebenev V., Dmitricheva E., Dolbinina V., Chernyshov D. (2014) MmHn(XO4)(m + n)/2 crystals: structure, phase transitions, hydrogen bonds, conductivity. I. K9H7(SO4)8∙Н2О crystals – a new representative of the family of solid acid conductors. Acta Cryst. B, 70, 218-226. https://doi.org/10.1107/S2052520613029892
12. Makarova I., Selezneva E., Canadillas-Delgado L., Mos-sou E., Vasil’ev A., Komornikov V., Devishvili A. (2021) Crystal structure, hydrogen bonds and thermal transformations of superprotonic conductor Cs6(SO4)3(H3PO4)4. Acta Cryst. B, 77, 266-274. https://doi.org/10.1107/S2052520621001840
13. Makarova I.P., Shuvalov L.A., Simonov V.I. (1988) Structural phase transitions in Rb3H(SeO4)2 single crystals. Ferroelectrics, 79, 111-116. http://dx.doi.org/10.1080/00150198808229410
14. Paschos O., Kunze J., Stimming U., Maglia F. (2011) A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J. Phys.: Condens. Matter, 23, 234110-1-26. http://dx.doi.org/10.1088/0953-8984/23/23/234110
15. Pawlaczyk Cz., Pawłowski A., Połomska M., Pogorzelec-Glaser K., Hilczer B., Pietraszko A., Markiewicz E., Ławniczak P., Szcześniak L. (2010) Anhydrous proton conductors for use as solid electrolytes. Phase Transitions, 83, 854-867. http://dx.doi.org/10.1080/01411594.2010.509159
16. Pimentel G.C., McClellan A.L. (1960) The hydrogen bond. San Francisco, W.H. Freeman, 475 p.
17. Selezneva E., Makarova I., Gainutdinov R., Tolstikhina A., Malyshkina I., Somov N., Chuprunov E. (2023) Conductivity, its anisotropy and changes as a manifestation of the features of the atomic and real structures of superprotonic [K1–x(NH4)x]3H(SO4)2 crystals. Acta Cryst. B, 79, 46-54. https://doi.org/10.1107/S2052520622011751
Review
For citations:
Makarova I.P., Selezneva E.V., Tolstikhina A.L., Gainutdinov R.V. Regular relations of the composition, structure and properties of crystals of hydrogen-containing compounds. LITHOSPHERE (Russia). 2024;24(2):398-405. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-398-405