Preview

LITHOSPHERE (Russia)

Advanced search

Negative thermal expansion of β-Rb2SO4

https://doi.org/10.24930/1681-9004-2024-24-2-254-263

Abstract

Research subject. The low-temperature modification of β-Rb2SO4 sulfate (Pmcn). Aim. Low-temperature study of the thermal expansion of β-Rb2SO4 by high-temperature powder X-ray diffraction in comparison with the crystal structure, as well as interpretation of the anisotropy of β-Rb2SO4 thermal expansion. Materials and Method. Powder X-ray diffraction and high-temperature powder X-ray diffraction. Results. The thermal expansion of β-Rb2SO4 sulfate was studied for the first time using low-temperature powder thermal X-ray diffraction in comparison with the crystal structure. The phase composition was confirmed by powder X-ray diffraction. The thermal expansion of β-Rb2SO4 is practically isotropic. Across the temperature range from –177 to –140°C, the sulfate experiences negative thermal expansion. A further increase in temperature leads to a change in its thermal expansion, which becomes positive. It is proposed to consider the crystal structure of β-Rb2SO4 sulfate as a mixed framework of [RbSO4]–1, which, in turn, consists of fundamental building units (microblocks) of Rb(SO4)6. Across the temperature range from room temperature to –100°C, the maximum expansion of β-Rb2SO4 sulfate occurs along the a axis. The minimum thermal expansion is observed along the c-axis, along the columns consisting of microblocks (αa = 65.4(3)∙10–6°C–1, αb = 59.7(2)∙10–6°C–1, αc = 58.6(2)∙10–6°C–1 at +25°C). In the temperature range from –177 to –140°C, thermal expansion is negative in all three directions (αa = –10.3(3)∙10–6°C–1, αb = –8.6(2)∙10–6°C–1, αc = –9.7(2)∙10–6°C–1 at –170°C). Conclusion. The thermal expansion of β-Rb2SO4 sulfate in the low-temperature range (from –177 to –25°C) was studied for the first time, its structural interpretation was performed. A comparison was given with the thermal expansion of isostructural β-K2SO4.

About the Authors

A. P. Shablinskii
Institute of Silicate Chemistry, RAS
Russian Federation

Andrey P. Shablinskii

2 Makarova emb., 199034 Saint Petersburg



S. V. Demina
Institute of Silicate Chemistry, RAS; Saint Petersburg State University, Institut des Géosciences
Russian Federation

Sofya V. Demina

2 Makarova emb., 199034 Saint Petersburg

7/9 Universitetskaya emb., 199034 Saint Petersburg



R. S. Bubnova
Institute of Silicate Chemistry, RAS
Russian Federation

Rimma S. Bubnova

2 Makarova emb., 199034 Saint Petersburg



S. K. Filatov
Saint Petersburg State University, Institut des Géosciences
Russian Federation

Stanislav K. Filatov

7/9 Universitetskaya emb., 199034 Saint Petersburg



References

1. Aksenov S.M., Deyneko D.V. (2022) Crystal chemistry and design of new materials with mineral-related structures: the structure-properties relationship. Herald of the Kola Science Centre of the RAS, 14, 7-16. https://doi.org/10.37614/2307-5228.2022.14.2.001

2. Bindi L., Nespolo M., Krivovichev S.V., Chapuis G., Biagioni C. (2020) Producing highly complicated materials. Nature does it better. Rep. Progr. Phys., 83, 106501.

3. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. (2018) RietveldToTensor, Program for processing powder X-ray diffraction data under variable conditions. Glass Phys. Chem., 44(1), 33-40 (translated from Fizika i Khimiya Stekla 44(1), 48-60). https://doi.org/10.1134/S1087659618010054

4. Dang P., Yun X., Zhang Q., Liu D., Lian H., Shang M., Lin J. (2021) Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: non-concentration quenching and negative thermal expansion. Light Sci. Appl., 10, 29. https://doi.org/10.1038/s41377-021-00469-x

5. Filatov S.K. (1990) High-temperature crystal chemistry. Leningrad, Nedra Publ., 288 p. (In Russ.)

6. Fischmeister H.F. (1962) Roentgenkristallographische Ausdehnungsmessungen an einigen Alkalisulfaten. Monatshefte fuer Chemie, 93, 420-434. https://doi.org/10.1007/BF00903139

7. Iizumi M., Axe J.D., Shirane G., Shimaoka K. (1977) Structural phase transformation in K2SeO4. Phys. Rev. B, 15, 4392-4411. https://doi.org/10.1103/PhysRevB.15.4392

8. Korytnaya F.M., Pokrovsky A.N., Degtyarev P.A. (1980) Investigation of phase equilibria in the systems K2SO4-Sc2(SO4)3, Rb2SO4-Sc2(SO4)3 and Cs2SO4-Sc2(SO4)3. Thermochim Acta, 41, 141-146. https://doi.org/10.1016/0040-6031(80)80058-X.

9. Krishnan R.S., Srinivasan R., Devanarayanan S. (1979) Thermal expansion of crystals. Elsevier, 305 p. Krivovichev S.V. (2008) Minerals as Advanced Materials I. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4

10. Mary T.A., Evans J.S.O., Vogt T., Sleight A.W. (1996) Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 272, 90-92. https://doi.org/10.1126/science.272.5258.90

11. Mueller N. (1910) System Rb2SO4-CaSO4. Solid solution regions do not obey phase rule. Neues Jahrb. Mineral., Geol. Palaeontol., Beilageband, 30, 1-54.

12. Nord A.G. (1974) Low-temperature rubidium sulphate. Acta Cryst., B30, 1640-1641. https://doi.org/10.1107/ S0567740874005498

13. Ogg A. (1928) The crystal structures of the isomorphic sulphates of K, NH4, Rb, and Cs. Philos. Mag., 5, 354-371. https://doi.org/10.1080/14786440208564474

14. Ojima K., Nishihata Y., Sawada A. (1995) Structure of Potassium Sulfate at Temperatures From 296 K Down to 15 K. Acta Cryst., B51, 287-293. https://doi.org/10.1107/S0108768194013327

15. Plyushchev V.E. (1962) Me2SO4–CaSO4 binary systems. Rus. J. Inorganic Chem., 7, 709-712 (translated from Zhurnal Neorgan. Chimii, 66, 1377-1380).

16. Sasaki A., Akihiro H., Hisashi K., Norihiro M. (2010) Ab initio crystal structure analysis based on powder diffraction data used PDXL. Rigaku J., 26, 10-14.

17. Shablinskii A.P., Filatov S.K., Biryukov Y.P. (2023) Crystal structures inherited from parent high-temperature disordered microblocks: Ca2SiO4, Na2SO4–K2SO4 sulfates, and related minerals (bubnovaite and dobrovolskyite). Phys. Chem. Miner., 50, 30. https://doi.org/10.1007/s00269-023-01253-6

18. Shablinskii A.P., Filatov S.K., Krivovichev S.V., Vergasova L.P., Moskaleva S.V., Avdontseva E.Yu., Knyazev A.V., Bubnova R.S. (2021) Dobrovolskyite, Na4Ca(SO4)3, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia. Miner. Mag., 85, 233-241. https://doi.org/10.1180/mgm.2021.9

19. Shannon R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767. https://doi.org/10.1107/S0567739476001551

20. Takenaka K. (2018) Progress of research in negative thermal expansion materials: paradigm shift in the control of thermal expansion. Front. Chem., 6, 267. https://doi.org/10.3389/fchem.2018.00267

21. Tutton A.E. (1899) The thermal deformations of the crystallised normal sulphates of potassium, rubidium, and caesium. Philos. Transact. Royal Soc. A, 192, 350-353. https://doi.org/10.1098/rspl.1898.0112

22. Unruh H.G. (1970) The spontaneous polarization of (NH4)2SO4. Solid State Commun., 8, 1951-1954. https://doi.org/10.1016/0038-1098(70)90666-6

23. Voronkov A.A., Il’ukhin V.V., Belov N.V. (1975) Crystal chemistry of mixed frameworks. Principles of their formation. Kristallografiya, 20(3), 556-567. (In Russ.)

24. Weber H.J., Schulz M., Schmitz S., Granzin J., Siegert H. (1989) Determination and structural application of anisotropic bond polarisabilities in complex crystals. J. Phys.: Condens Matter., 1, 8543-8547. https://doi.org/10.1088/0953-8984/1/44/025

25. Yakubovich O.V., Khasanova N., Antipov E.V. (2020) Mineral-inspired materials: synthetic phosphate analogues for battery applications, Minerals, 10, 524.


Review

For citations:


Shablinskii A.P., Demina S.V., Bubnova R.S., Filatov S.K. Negative thermal expansion of β-Rb2SO4. LITHOSPHERE (Russia). 2024;24(2):254-263. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-254-263

Views: 261


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)