Preview

LITHOSPHERE (Russia)

Advanced search

Combinatorial and algorithmic complexity of crystal structures

https://doi.org/10.24930/1681-9004-2024-24-2-240-253

Abstract

Research subject. Numeral indexes describing the complexity of the system of contacts between structural units in crystal structures. Aim. Development of a complexity index for the system of contacts between periodic structural units based on the indices available for those between structural units in island (molecular) structures. Materials and methods. Structural data were selected from the COD, AMCSD, and CSD crystallographic databases. The system of contacts in the structures was analyzed by the Voronoi–Dirichlet polyhedra (VDP) method in the ToposPro software package. Results. The method of topological analysis of the system of contacts in molecular crystals was adapted to all heterodesmic crystal structures and tested on the structures of compounds of several classes. Target complexity indices were developed. Conclusions. Networks of contacts between periodic structural units are low-dimensional. A generalized structural class for such networks can be derived from the original crystal structure data. The algorithmic complexity of heterodesmic structures is subadditive, in contrast to superadditive combinatorial complexity. For the first time, the number of bearing contacts was calculated between periodic structural units, reflecting the algorithmic complexity of the structure at the appropriate level of structural description.

About the Authors

D. A. Banaru
V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS
Russian Federation

Darya A. Banaru

19 Kosygin st., Moscow 119334



S. M. Aksenov
Kola Science Centre, RAS
Russian Federation

Sergey M. Aksenov

14 Fersman st., Apatity, Murmansk region 184209



References

1. Banaru A.M. (2009) Critical coordination number in homo-molecular crystals. Moscow Univ. Chem. Bull., 64(2), 80-82. https://doi.org/10.3103/S0027131409020023

2. Banaru A.M., Shiroky V.R. (2020) A minimal generating set of cubic Fedorov groups. Cryst. Rep., 65(3), 417-421. https://doi.org/10.1134/S1063774520030050

3. Banaru A.M., Aksenov S.M., Krivovichev S.V. (2021) Complexity parameters for molecular solids. Symmetry, 13(8), 1399. https://doi.org/10.3390/sym13081399

4. Banaru A.M., Banaru D.A., Aksenov S.M. (2023a) Groupoid of intermolecular contacts and its fuzzy Cayley graph. Moscow Univ. Chem. Bull., 78(3), 103-113. https://doi.org/10.3103/S0027131423030033

5. Banaru A.M., Banaru D.A., Zasurskaya L.A., Aksenov S.M. (2023b) Belsky–Zorky structural classes in homomolecular crystals: general statistics until 2022. J. Struct. Chem., 64(1), 46-57. https://doi.org/10.1134/S002247662301002X

6. Banaru D.A., Aksenov S.M., Banaru A.M., Potekhin K.A. (2023c) Structural classes with a sole bearing contact of chained structural units. Cryst. Rep., 68(4), 546-565. https://doi.org/10.1134/S1063774523600333

7. Banaru D.A., Aksenov S.M., Yamnova N.A., Banaru A.M. (2023d) Structural complexity of molecular, chain, and layered crystal structures of natural and synthetic arsenic sulfides. Cryst. Rep., 68(2), 223-236. https://doi.org/10.1134/S1063774523020037

8. Belsky V.K., Zorky P.M. (1977) Distribution of homomolecular crystals by chiral types and structural classes. Acta Cryst., A33, 1004-1006. https://doi.org/10.1107/S0567739477002393

9. Blatov V.A. (2009) Methods for topological analysis of atomic nets. J. Struct. Chem., 50(1), 160-167. https://doi.org/10.1007/s10947-009-0204-y

10. Blatov V.A., Pogildyakova L.V., Serezhkin V.N. (1996) Environment of potassium ions in oxygen-containing compounds. Dokl. Chemistry, 351(1-3), 305-308.

11. Blatov V.A., Shevchenko A.P., Proserpio D.M. (2014) Applied topological analysis of crystal structures with the program package ToposPro. Crystal Growth Des., 14(7), 3576-3586. https://doi.org/10.1021/cg500498k

12. Bolotina N.B., Brazhkin V.V., Dyuzheva T.I., Katayama Y., Kulikova L.F., Lityagina L.V., Nikolaev N.A. (2014) High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Lett., 98(9), 539-543. https://doi.org/10.1134/S0021364013220025

13. Csiszár I. (2008) Axiomatic Characterizations of Information Measures. Entropy, 10, 261-273. https://doi.org/10.3390/e10030261

14. Downs R.T., Hall-Wallace M. (2003) The American Mineralogist crystal structure database. Amer. Miner., 88(1), 247-250.

15. Ďurovič S., Hybler J. (2006) OD structures in crystallography – basic concepts and suggestions for practice. Z. Krist. – Crystalline Materials, 221(1), 63-76. https://doi.org/10.1524/zkri.2006.221.1.63

16. Evers J., Beck W., Göbel M., Jakob S., Mayer P., Oehlinger G., Rotter M., Klapötke T.M. (2010) The structures of δ-PdCl2 and γ-PdCl2: phases with negative thermal expansion in one direction. Angew. Chem. Int. Ed., 49(33), 5677-5682. https://doi.org/10.1002/anie.201000680

17. Gajda Z., Kominek Z. (1991) On separation theorems for subadditive and superadditive functionals. Studia Mathematica, 100(1), 25-38.

18. Gražulis S., Daškevič A., Merkys A., Chateigner D., Lutterotti L., Quirós M., Serebryanaya N.R., Moeck P., Downs R.T., Le Bail A. (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res., 40(D1), D420-D427. https://doi.org/10.1093/nar/gkr900

19. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. (2016) The Cambridge Structural Database. Acta Cryst., B72(2), 171-179. https://doi.org/10.1107/S2052520616003954

20. Hallweger S.A., Kaußler C., Kieslich G. (2022) The structural complexity of perovskites. Phys. Chem. Chem. Phys., 24(16), 9196-9202. https://doi.org/10.1039/D2CP01123A

21. Hornfeck W. (2020) On an extension of Krivovichev’s complexity measures. Acta Cryst., A76, 534-548. https://doi.org/10.1107/S2053273320006634

22. Kaußler C., Kieslich G. (2021) CrystIT: complexity and configurational entropy of crystal structures via information theory. J. Appl. Cryst., 54(1), 306-316. https://doi.org/10.1107/S1600576720016386

23. Krivovichev S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Cryst., A68, 393-398. https://doi.org/10.1107/S0108767312012044

24. Krivovichev S.V. (2016) Structural complexity and confi-gurational entropy of crystals. Acta Cryst., B72(2), 274-276. https://doi.org/10.1107/s205252061501906x

25. Krivovichev S.V. (2017) Structure description, interpretation and classification in mineralogical crystallography. Cryst. Rev., 23(1), 2-71. https://doi.org/10.1080/0889311X.2016.1220002

26. Krivovichev S.V., Krivovichev V.G., Hazen R.M., Aksenov S.M., Avdontceva M.S., Banaru A.M., Gorelova L., Ismagilova R.M., Kornyakov I.V., Kuporev I.V., Morrison S., Panikorovskii T., Starova G.L. (2022) Structural and chemical complexity of minerals: an update. Min. Mag., 86(2), 183-204. https://doi.org/10.1180/mgm.2022.23

27. Liebau F. (2003) Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation, and systematic classification. Microporous Mesoporous Mat., 58(1), 15-72. https://doi.org/10.1016/S1387-1811(02)00546-2

28. Lord E.A., Banaru A.M. (2012) Number of generating elements in space group of a crystal. Moscow Univ. Chem. Bull., 67(2), 50-58. https://doi.org/10.3103/S0027131412020034

29. Mackay A.L. (2001) On complexity. Cryst. Rep., 46(4), 524-526. https://doi.org/10.1134/1.1387117

30. MacRae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. (2020) Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Cryst., 53, 226-235. https://doi.org/10.1107/S1600576719014092

31. Nespolo M., Souvignier B., Stöger B. (2020) Groupoid description of modular structures. Acta Cryst., A76(3), 334-344. https://doi.org/10.1107/S2053273320000650

32. O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. (2008) The reticular chemistry structure resource (RCSR). Database of, and symbols for, crystal nets. Acc. Chem. Res., 41(12), 1782-1789. https://doi.org/10.1021/ar800124u

33. Oganov A.R., Valle M. (2009) How to quantify energy landscapes of solids. J. Chem. Phys., 130(10), 104504. https://doi.org/10.1063/1.3079326

34. Pauling L. (1929) The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc., 51(4), 1010-1026. https://doi.org/10.1021/ja01379a006

35. Sabirov D.S. (2020) Information entropy of mixing molecules and its application to molecular ensembles and chemical reactions. Comput. Theor. Chem., 1187(July), 112933. https://doi.org/10.1016/j.comptc.2020.112933

36. Shevchenko A.P., Shabalin A.A., Karpukhin I.Y., Blatov V.A. (2022). Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Techn. Advanced Mat.: Methods, 2(1), 250-265. https://doi.org/10.1080/27660400.2022.2088041

37. Siidra O.I., Britvin S.N., Krivovichev S.V., Depmeier W. (2010) Polytypism of layered alkaline hydroxides: crystal structure of TlOH. Z. Anorg. Allgem. Chem., 636(3-4), 595-599. https://doi.org/10.1002/zaac.200900367

38. Siidra O.I., Zenko D.S., Krivovichev S.V. (2014) Structural complexity of lead silicates: crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjöite. Amer. Miner., 99, 817-823.

39. Urusov V.S. (2012) Symmetry-dissymmetry in the evolution of the World: from the birth of the Universe to the development of life on Earth. Moscow, URSS, 258 p. (In Russ.)

40. Yamnova N.A., Banaru D.A., Banaru A.M., Aksenov S.M. (2022) Comparative crystal chemistry, symmetry features, and structural complexity of LiOH, NaOH, RbOH, CsOH, and TlOH hydroxides. J. Struct. Chem., 63(12), 205


Review

For citations:


Banaru D.A., Aksenov S.M. Combinatorial and algorithmic complexity of crystal structures. LITHOSPHERE (Russia). 2024;24(2):240-253. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-240-253

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)