Major structural types in inorganic chemistry and mineralogy: New data
https://doi.org/10.24930/1681-9004-2024-24-2-214-225
Abstract
Research subject. Structural types with different stoichiometric correlations between chemical elements. Aim. To analyze the prevalence of structural types with different stoichiometric correlations between chemical elements, such as simple substances with binary compounds, triple compounds with stoichiometry ABX3, triple compounds with stoichiometry AB2X4. Key points. The analysis was conducted using the databases of inorganic compounds ICSD (Inorganic Crystal Structure Database) and PCD (Pearson’s Crystal Data). The number of entries with the most typical structural types for 2013 and 2023 are determined. Their classifications in various databases for different years are given. The ranks of structural types for minerals and inorganic compounds are analyzed. The minerals crystallized in all the considered structural types are indicated according to the 2023 ISCD data, sampling only by the number of minerals registered in IMA (International Mineralogical Association – Commission on New Minerals, Nomenclature and Classification) for March 2023. The Russian names of minerals are presented in accordance with the database WWW-MINCRIST for the minerals crystallizing in all the structural types under consideration. Conclusions. The most probable causes for the realization of each stoichiometric correlation in various structural types are determined. The prevalence of certain structural types among inorganic compounds and minerals, as well as the underlying reasons, are discussed based on the principles of crystal chemistry.
About the Authors
N. N. EreminRussian Federation
Nikolay N. Eremin
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
O. A. Gurbanova
Russian Federation
Olga A. Gurbanova
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
A. D. Podobrazhnykh
Russian Federation
Andrey D. Podobrazhnykh
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
N. A. Ionidis
Russian Federation
Nikita A. Ionidis
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
L. V. Schvanskaya
Russian Federation
Larisa V. Schvanskaya
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
T. A. Eremina
Russian Federation
Tatiana A. Eremina
Department of Crystallography and Crystal Chemistry, Geological Facility
1 Leninskie Gory, Mosсow 119234
References
1. Bokiy G.B. (1971) Crystal chemistry: 3rd ed. Moscow, Nauka Publ., 400 p. (In Russ.)
2. Burke E.A.J. (2006) International Mineralogical Association. Elements, 2, 388.
3. Chichagov A.V., Varlamov D.A., Dilanyan R.A., Dokina T.N., Drozhzhina N.A., Samokhvalova O.L., Ushakovskaya T.V. (2001) MINCRYST: a Crystallographic Database for Minerals, Local and Network (WWW) Versions. Crystallogr. Rep., 46(5), 876-879 (translated from Kristallografiya, 46(5), 950-954). https://doi.org/10.1134/1.1405882
4. Dolivo-Dobrovolsky V.V. (1987) On the distribution of mineral species by symmetry classes. Zap. VMO, 116(1), 7-17. (In Russ.)
5. Eremin N.N., Artamonova A.A., Gostishcheva N.D., Kochetkova E.M., Mezhueva A.A. (2020) On the Crystal Chemical Flexibility of the NiAs Structure Type. Crystallogr. Rep., 65(2), 191-196. https://doi.org/10.1134/S1063774520020078
6. Eremin N.N., Eremina T.A. (2018) Inorganic crystal chemistry. Book 1. Moscow, KDU Publ., 394 p. (In Russ.)
7. Eremin N.N., Eremina T.A., Marchenko E.I. (2020) Structural chemistry and crystal chemistry: electronic edition of network distribution. Moscow, KDU Publ.; Dobrosvet Publ., 494 p. (In Russ.)
8. Filatov S.K. (1990) High-temperature crystal chemistry. Leningrad, Nedra Publ., 288 p. (In Russ.)
9. Kuzmicheva G.M. (2002) Crystal chemical patterns in the Periodic Table of Elements D.I. Mendeleev. Basic crystal structures of compounds. Tutorial. Moscow, MITHT, 88 p. (In Russ.)
10. Kwei G.H., Lawson A.C., Billinge S.J.L., Cheong S.-W. (1993) Structures of the ferroelectric phases of barium titanate. Phys. Chem., 97, 2368-2377.
11. Lima-de-Faria J. (2012) The close packing in the classification of minerals. Eur. J. Miner., 24, 163-169.
12. Lima-de-Faria J., Hellner E., Liebau F., Makovicky E., Parthe E. (1990) Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Cryst. Section A. Foundations of Crystallography. 46(1), 1-11. https://doi.org/10.1107/S0108767389008834
13. Marchenko E.I., Oganov A.R., Mazhnik E.A., Eremin N.N. (2022) Stable compounds in the CaO–Al2O3 system at high pressures. Phys. Chem. Minerals, 49, 44. https://doi.org/10.1007/s00269-022-01221-6
14. Parthé E. (1993) Some chapters of structural inorganic chemistry. Moscow, Mir Publ., 142 p. (In Russ.)
15. Pauling L. (1929) The Principles Determining the Structure of Complex Ionic Crystals. J. Amer. Chem. Soc., 51, 1010-1026.
16. Pearson W. (1977) Crystal chemistry and physics of metals and alloys. Pt 1. Moscow, Mir Publ., 420 p. (In Russ.)
17. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds. Release 2022/23. (Ed. by P. Villars, K. Cenzual). Materials Park, Ohio, USA: ASM Int.
18. Pyatenko Yu.A. (1965) On some aspects of the crystal chemical approach to the derivation of mineral formulas. Zap. VMO, 94(6), 655-664. (In Russ.)
19. Serezhkin V.N., Pushkin D.V., Serezhkina L.B. (2007) The effect of the chemical nature of atoms on their site symmetry in the crystal structure. Dokl. RAN, 413(1), 60-65. (In Russ.) https://doi.org/10.1134/S0012501607030037
20. Shubnikov A.V. (1922) The fundamental law of crystal chemistry. Izv. AN., ser. 6, 16(1-18), 515-524. (In Russ.)
21. Urusov V.S. (1991) Crystal chemical conditions for the population of regular point systems. Vestn. MGU. Ser. Geol., 4, 3-19. (In Russ.)
22. Urusov V.S. (2009) The structural type and related concepts of crystal chemistry. Kristallografiya, 54(5), 795-804. (In Russ.) https://doi.org/10.1134/S106377450905006X
23. Urusov V.S. (2010) Natural selection of mineral species. Geology of Ore Deposits, 52(8), 852-871 (translated from Zap. RMO, 139(1), 89-110).
24. Voroshilov Yu.V., Pavlishin V.I. (2011) Foundations of crystallography and crystal chemistry. X-ray diffraction of crystals. Kyiv, KNT Publ., 568 p. (In Russ.)
25. Zagorac D., Müller H., Ruehl S., Zagorac J., Rehme S. (2019) Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Cryst., 52, 918-925. https://doi.org/10.1107/S160057671900997X
26. Нawthorne F.C. (2006) Landmark papers. Structure topology. L., Miner. Soc. Great Britain and Ireland, 301 p.
Review
For citations:
Eremin N.N., Gurbanova O.A., Podobrazhnykh A.D., Ionidis N.A., Schvanskaya L.V., Eremina T.A. Major structural types in inorganic chemistry and mineralogy: New data. LITHOSPHERE (Russia). 2024;24(2):214-225. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-214-225