Preview

LITHOSPHERE (Russia)

Advanced search

Lithological features of Lake Bannoe sediments (Southern Urals) as an indicator of environmental and climate changes in the Holocene

https://doi.org/10.24930/1681-9004-2024-24-1-173-194

Abstract

Research subject. Bottom sediments of Lake Bannoe (Southern Urals). Aim. Identification of lithologic features of Lake Bannoe sediments, which could reflect sedimentation conditions in the Holocene. Materials and methods. The detailed complex analysis included radiocarbon dating, grain-size analysis, X-ray diffraction analysis, electron microscopy, X-ray fluorescence and isotope analysis, coercive spectrometry and pollen analysis. Results. Radiocarbon dating showed that sedimentation in Lake Bannoe began no later than ~13 thousand years ago. Combination of data from various laboratory studies unraveled four lithological zones and the corresponding stages in the sedimentation history. The grain size, allothigenic particles, carbonate minerals, organic matter and isotopic composition of carbon and oxygen are the most informative indicators. Grain size variations and the ratio between allothigenic and carbonate components reflect changes in the Lake’s depth and clastic material supply, which, in turn, is associated with humidity. Organic matter parameters (TOC, δ13Corg, C/N ratio) can be considered as indicators of climate-sensitive changes in bioproductivity of the sedimentation basin. They also reflect the ratio of exogenous and endogenous organic matter in the sedimentary environment. The isotopic composition of carbon and oxygen (δ13Ccarb, δ18Ocarb) in sedimentary carbonates is an informative indicator of lithological zones and climatic events of the Holocene due to its sensitivity to changes in biomass, temperature fluctuations, and fresh water inflow. The paramagnetic component k_para was used as an indicator of the allothigenic material input into the lake basin for the first time in this region. Conclusions. The granulometric, mineral, and chemical composition, as well as the magnetic properties of Lake Bannoe sediments reflect the history of Lake sedimentation in the Southern Urals, which agrees mainly with the climate stages of the Holocene.

About the Authors

A. R. Yusupova
Kazan Federal University, Institute of Geology and Petroleum Technologies
Russian Federation

4/5 Kremlevskaya st., Kazan 420008, Russia



N. G. Nurgalieva
Kazan Federal University, Institute of Geology and Petroleum Technologies
Russian Federation

4/5 Kremlevskaya st., Kazan 420008, Russia



D. M. Kuzina
Kazan Federal University, Institute of Geology and Petroleum Technologies
Russian Federation

4/5 Kremlevskaya st., Kazan 420008, Russia



A. M. Rogov
Kazan Federal University, Institute of Geology and Petroleum Technologies; Kazan Federal University, Interdisciplinary Center of Analytical Microscopy
Russian Federation

4/5 Kremlevskaya st., Kazan 420008, Russia

Parizhskaya Kommuna st., Kazan 420021, Russia



G. R. Nigamatzyanova
Kazan Federal University, Institute of Geology and Petroleum Technologies
Russian Federation

4/5 Kremlevskaya st., Kazan 420008, Russia



References

1. Abdrakhmanov R.F., Popov V.G. (2010) Geochemistry and Groundwater Formation Proctsses in the Southtrn Urals. Ufaб Gilem Publ., 420 p. (In Russ.)

2. Allen H.D. (2003) Response of past and present Mediterranean ecosystems to environmental change. Progress Phys. Geogr. J., 27(3), 359-377. https://doi.org/10.1191/0309133303pp387r

3. Avavena R. (1992) Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quat. Res., 37, 333-345 https://doi.org/10.1016/0033-5894(92)90071-P

4. Bakhtin A.I., Nizamutdinov N.M., Khasanova N.M., Nurieva E.M. (2007) Factor analysis in geology: Textbook. Kazan, Kazan St. Univ. Publ., 32 p. (In Russ.)

5. Bikkinin R.F. (1999) Ichthyofauna of the Republic of Bashkortostan. Fauna and flora of the Republic of Bashkortostan: problems of their study and protection. Ufa, 45-50. (In Russ.)

6. Blytt A.G. (1876a) ForsØg til en Theori om Indvandingen af Norges Flora. Nyt Mag. Naturv. Christiana (Oslo), 21, 279-362.

7. Blytt A.G. (1876b) Immigration of the Norwegian Flora. Cammermeyer. Christiania (Oslo), 89 p.

8. Bond G. (1997) A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Sci., 278(5341), 1257-1266. https://doi.org/10.1126/science.278.5341.1257

9. Borisov A.S. (2004) The system of technological support for paleomagnetic studies of sediments of modern lakes. Doc. geol. and min. sci. diss. Kazan, 267 p. (In Russ.)

10. Bovle J.F. (2002) Inorganic geochemical methods in paleolimnology. In Tracking environmental change using lake sediments. V. 2. Physical and geochemical methods. (Eds M.W. Last, J.P. Smol). Kluwer Academic Publishers, 83-142. https://doi.org/10.1007/0-306-47670-3_5

11. Burov B.V., Nurgaliev D.K., Yasonov P.G. (1986) Paleomagntetic analysis. Kazan, Kazan St. Univ. Publ., 167 p. (In Russ.)

12. Deelman J.C. (2011) Low Temperature Formation of Dolomite and Magnesite. Open access e book, 512.

13. Demkin V.A. (1996) Natural conditions of the Volga-Ural steppes III–II thousand years BP. The North-Eastern Azov region in the system of Eurasian antiquities (Eneolithic- Bronze Age). Ch. II. Donetsk. (In Russ.)

14. Demkin V.A., Dergacheva M.I., Borisov A.V., Ryskov Ya.G., Oleinik S.A. (1998) Evolution of soils and climate change of the Eastern European semidesert in the Late Holocene. Pochvovedenie, (2), 148-157. (In Russ.)

15. Ecology of lake Big Miassovo. (2000) (Eds A.G. Rogozin, V.A. Tkachev). Miass, IGZ UrO RAN Publ., 318 p. (In Russ.)

16. Egli R. (2004a) Characterization of individual rock magnetic components by analysis of remanence curves. 1. Unmixing natural sediments. Studia Geophys. Geodaetica, 48(2), 391-446. https://doi.org/10.1023/B:SGEG.0000020839.45304.6d

17. Egli R. (2004b) Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth, 29(13/14), 851-867. https://doi.org/10.1016/j.pce.2004.04.001

18. Evans M. (2003) Environmental Magnetism. Principles and Applications of Enviromagnetics (M. Evans, F. Heller). San Diego, Academic Press, 299 p.

19. Faegri K., Iversen J. (1950) Textbook of pollen analysis. Munksgaard, Copenhagen, 168 p.

20. Frolov V.T. (1992) Lithology. B. 1. Moscow, Mosk. St. Univ. Publ., 336 p. (In Russ.) Gradstein F.M., Ogg J.G., Schmitz M.D., Ogg G.M. (2020) The Geologic Time Scale. V. 2. Elsevier, 1219-1240.

21. Iassonov P.G., Nourgaliev D.K., Burov B.V., Heller F. (1998) A modernized coercivity spectrometer. Geol. Carpathica, (49), 224-226.

22. Karogodin Yu.N. (1980) Sedimentary cyclicity. Moscow, Nedra Publ., 242 p. (In Russ.)

23. Kosareva L.R., Nourgaliev D.K., Kuzina D.M., Spassov S., Fattakhov A.V. (2015) Ferromagnetic, dia-/paramagnetic and superparamagnetic components of Aral sea sediments: significance for paleoenvironmental reconstruction. ARPN J. Earth Sci., 4(1), 1-6.

24. Krishnamurthy R.V., Bhattacharya S.K., Kusumgar S. (1986) Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments. India. Nature, 323, 150-152. https://doi.org/10.1038/323150a0

25. Krylov P.S., Nurgaliev D.K., Yasonov P.G., Dautov A.N. et al. (2020) Seismoacoustic research of lake Bannoe bottom sediments (South Ural, Russia). ARPN J. Eng. Appl. Sci., 15(1), 133-135.

26. Kucheva N.A., Stepanova T.I. (2013) Proposals for the modernization of the zoning scheme of the lower carboniferous Urals (on the example of the Middle and Southern Urals). Ezhegodnik-2012, 22-28. (Tr. IGG UrO RAN, vyp. 160). (In Russ.)

27. Kupriyanova L.A., Aleshina L.A. (1972) Pollen and spores of plants from the Flora of European part of the USSR. V. I. Leningrad, Nauka Publ., 1-171. (In Russ.)

28. Kupriyanova L.A., Aleshina L.A. (1978) Pollen Dicotyledonearum Florae parties Europaeae URSS. Lamiaceae– Zygophyllaceae. Leningrad, Nauka Publ., 1-184. (In Russ.)

29. Lamb A.L., Leng M.J., Mohammed M.U., Lamb H.F. (2004) Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition (C/N and d13C) of lacustrine organic matter. Quat. Sci. Rev., 23(7), 881-891. https://doi.org/10.1016/j.quascirev.2003.06.010

30. Leng M.J., Marshall J.D. (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quart. Sci. Rev., (23), 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012

31. Leonova G.A., Mal’tsev A.E., Melenevskii V.N., Miroshnichenko L.V., Kondrat’eva L.M., Bobrov V.A. (2018) Geochemistry of Diagenesis of Organogenic Sediments: An Example of Small Lakes in Southern West Siberia and Western Baikal Area. Geokhimiya, (4), 363-382. (In Russ.) https://doi.org/10.7868/S0016752518030068

32. Leusova N.Yu. (2020) Stability and preservation of biogenic forms of silica in coals. Uspekhi Sovremennogo Estestvoznaniya, (12), 117-123. (In Russ.)

33. Logvinenko N.V. (1984) Sedimentary rocks petrography (with research technique basics). Moscow, Vysshaya Shkola Publ., 416 p. (In Russ.)

34. Makhmutova G.M., Al’dermuzina I.F. (2016) Lake Yaktykul: recreational potential, development prospects. Innovatsionnaya Nauka, 8(3), 180-181. (In Russ.)

35. Mal’tsev A.E. (2017) Geochemistry of Holocene sections of sapropels of small lakes in the south of Western Siberia and Eastern Baikal region. Cand. geol. and min. sci. diss. Novosibirsk, A.P. Vinogradov Institute of Geochemistry SB RAS, 199 p. (In Russ.)

36. Maslennikova A.V., Udachin V.N., Aminov P.G. (2016) Lateglacial and Holocene environmental changes in the Southern Urals reflected in palynological, geochemical and diatom records from the lake Syrytkul sediments. Quat. Int., (420), 65-75. https://doi.org/10.1016/j.quaint.2015.08.062

37. Maslennikova A.V., Udachin V.N., Deryagin V.V. (2014) Paleoecology and Geochemistry of the Lacustrine Sedimentation in the Urals. Ekaterinburg, RIO UrO RAN, 136 p. (In Russ.)

38. Maslennikova A.V., Udachin V.N., Deryagin V.V., Shtenberg M.V. (2018) Reconstruction of Turgoyak lake (the Southern Urals) ecosystem changes in holocene. Lithosphere (Russia), (6), 914-927. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-6-914-927

39. Maslov V.A., Artyushkova O.V. (2010) Stratigraphy and correlation of Devonian deposits of the Magnitogorsk megazone of the Southern Urals. Ufa, Dizainpoligrafservis Publ., 288 p. (In Russ.)

40. McKenzie J.A. (1985) Carbon isotopes and productivity in the lacustrine and marine environment. Chemical processes in lakes. N.Y., John Wiley and Sons, 99-118.

41. Meyers P.A. (2003) Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org. Geochem., 34, 261-289. https://doi.org/10.1016/S0146-6380(02)00168-7

42. Meyers P.A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 114, 289-302. https://doi.org/10.1016/0009-2541(94)90059-0

43. Minyuk P.S., Borkhodoev V.Y., Wennrich V. (2014) Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6–11. Climate Past, 10(2), 467-485. https://doi.org/10.5194/cp-10-467-2014

44. Nurgaliev D.K., Yasonov P.G. (2009) Coercive spectrometer. The patent of the Russian Federation for utility model No. 81805. Bulletin of FIPS No. 9, p. 401, Saratov. (In Russ.)

45. Panova N.K., Antipina T.G. (2007) Dynamics of vegetation and natural environment in the Holocene according to palynological and botanical research of archaeological sites of the Shigir peat bog. Ecology of Ancient and Traditional Societies. Vyp. 3, 48-50. (In Russ.)

46. Panova N.K., Antipina T.G. (2013) The history of the development of the Gorbunovsky peat bog in the Middle Urals and the development of its territory by man in the Holocene. Dynamics of modern ecosystems in the Holocene. Kazan, 273-276. (In Russ.)

47. Rapuc W., Sabatier P., Arnaud F., Palumbo A., Develle A.-L., Reyss J.-L., Augustin L., Régnierc E., Chaprone E., Dumoulinc J-P., von Grafenstein U. (2019) Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Global Planet. Change, 34. https://doi.org/10.1016/j.gloplacha.2019.02.010

48. Reille M. (1995) Pollen et spores d’Europe et d’Afrique du nord Supplement 1. Laboratoire de botanique historique et palynology. URA CNRS. Marseille, France, 520 p. https://doi.org/10.7202/004885ar

49. Ronov A.B., Yaroshevskii A.A., Migdisov A.A. (1990) Chemical structure of the earth’s crust and geochemical balance of the main elements. Moscow, Nauka Publ., 180 p. (In Russ.)

50. Routh J., Meyers P.A., Hjorth T., Baskaran M., Hallberg R. (2007) Sedimentary geochemical record of recent environmental changes around Lake Middle Marviken. Sweden. J. Paleolimn, 37, 529-545 https://doi.org/10.1007/s10933-006-9032-7

51. Russell J.M., Werne J.P. (2009) Climate change and productivity variations recorded by sedimentary sulfur in Lake Edward, Uganda. D.R. Congo. Chem. Geol., (264), 337-346. https://doi.org/10.3390/ijerph192214798

52. Sampling and sample preparation of soil samples for X-ray phase analysis. (2007) Kazan, Kazan St. Univ. Publ., 14-17. (In Russ.)

53. Sedimentation and facies conditions (1990) (Trans. from Engl. Ed. H. Reading). In 2 v. V. 1. Moscow, Mir Publ., 352 p. (In Russ.)

54. Sernander R. (1984) Studier öfver den Ġótländska vegetationens utvecklingshistora. Akademisk afhandling, Uppsala, 112 p.

55. Shvanov V.N. (1969) Sand rocks and methods of their study. Leningrad, Nedra Publ., 248 p. (In Russ.)

56. Sklyarov E.V. (2001) Interpretation of geochemical data: Textbook. (Ed. B.V. Sklyarov). Moscow, Intermet Inzhiniring Publ., 288 p. (In Russ.)

57. Solotchin P.A. (2023) Lithological and mineralogical records of lacustrine sediments of lakes in the Siberian region as the basis for paleoclimatic reconstructions. Doc. geol. and min. sci. diss. Novosibirsk, 237 p. (In Russ.)

58. Solotchina E.P., Kuz’min M.I., Solotchin P.A., Mal’tsev A.E., Leonova G.A., Danilenko I.V. (2019) Authigenic Carbonates from Holocene Sediments of Lake Itkul (South of West Siberia) as Indicators of Climate Changes. Dokl. Earth Sci., 487(1), 745-750. (In Russ.) https://doi.org/10.31857/S0869-5652487154-59

59. State Geological Map. (1960) Sheet N-40-XXIII, scale 1:200 000.

60. Strakhov N.M. (1966) Geochemistry of silica: Moscow, Nauka Publ., 434 p. (In Russ.)

61. Subetto D.A. (2009) Bottom sediments of lakes: paleolimnological reconstructions. St.Petersburg, Publishing House of A.I. Herzen State Pedagogical University, 343 p. (In Russ.)

62. Talbot M.R. (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol.: Isotope Geosci. Sect., 80(4). https://doi.org/10.1016/0168-9622(90)90009-2

63. Turney C.S.M. (1999) Lacustrine bulk organic d13C in the British Isles during the last glacial-Holocene transition (14-9 Ka C-14 BP). Arct. Antarct. Alp. Res., 31, 71-81. https://doi.org/10.2307/1552624

64. Tzedakis P.C., Andrieu V., Beaulieu J.L., Crowhurst S. de et al. (1997) Comparison of terrestrial and marine records of changing climate of the last 500 000 years. Earth Planet. Sci. Lett., 150, 171-176. https://doi.org/10.1016/S0012-821X(97)00078-2

65. Tzedakis P.C., Hooghiemstra H., Pa¨like H. (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev., 25, 3416-3430. https://doi.org/10.1016/j.quascirev.2006.09.002

66. Volchenko Yu.A., Ivanov K.S., Koroteev V.A., Ozhe T. (2007) Structural and material evolution of complexes of the platinum-bearing belt of the Urals during the formation of chromite-platinum deposits of the Ural type. Lithosphere, (3), 3-27. (In Russ.)

67. Watts W.A., Allen J.R.M., Huntley B. (1995) Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, southern Italy. Quat. Sci. Rev., 15, 133-153. https://doi.org/10.1016/0277-3791(95)00093-3

68. Wetzel R.G. (2001a) Limnology: Lake and River Ecosystems. San Diego: Academic Press, 1006 p.

69. Wetzel R.G. (2001b) Limnology. Philadelphia, 743 p. Woszczyk M., Bechtel A., Gratzer R., Kotarba M.J.,

70. Kokocinski M., Fiebig J., Cieslinski R. (2011) Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (northern Poland). Org. Geochem., 42, 1025-1038. https://doi.org/10.1016/j.orggeochem.2011.07.002

71. Yudovich Ya.E., Ketris M.P. (2011) Geochemical indicators of lithogenesis, in Litologicheskaya geokhimiya (Lithological Geochemistry). Syktyvkar, Geoprint Publ., 742 p. (In Russ.)

72. Yusupova A., Kuzina D., Batalin G., Gareev B., Nourgalieva N. (2020) First Geochemical Data on Lacustrine Sediments, Lake Bannoe (Bannoe), Southern Urals. Proceedings 4th Kazan Golovkinsky Stratigraphic Meeting 2020 Sedimentary Earth Systems: Stra-tigraphy, Geochronology, Petroleum Resources, 292-297. https://doi.org/10.26352/E922_KAZAN2020

73. Yusupova A.R., Nurgalieva N.G. (2021) Geochemical basis of climate change indication in the Holocene sediments of Lake Bannoe (Southern Urals, Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 163(3), 514-526. (In Russ.) https://doi.org/10.26907/2542-064X.2021.3.514-526

74. Zhang W., Ming Q., Shi Z., Chen G., Niu J. et al. (2014) Lake Sediment Records on Climate Change and Human Activities in the Xingyun Lake Catchment, SW China. PLoS ONE, 9(7), 1-10. https://doi.org/10.1371/journal.pone.0102167

75. Zhong W., Xue J., Li X., Xu H., Ouyang J. (2010) A Holocene climatic record denoted by geochemical indicators from Barkol Lake in the northeastern Xinjiang, NW China. Geochem. Int., 48(8), 792-800. https://doi.org/10.1134/s0016702910080057


Review

For citations:


Yusupova A.R., Nurgalieva N.G., Kuzina D.M., Rogov A.M., Nigamatzyanova G.R. Lithological features of Lake Bannoe sediments (Southern Urals) as an indicator of environmental and climate changes in the Holocene. LITHOSPHERE (Russia). 2024;24(1):173-194. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-1-173-194

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)