Preview

LITHOSPHERE (Russia)

Advanced search

Mapping of bioavailable 87Sr/86Sr in the Southern Trans-Urals

https://doi.org/10.24930/1681-9004-2023-23-6-1079-1094

Abstract

Research subject. Spatial distribution of bioavailable strontium in the South Trans-Urals. Aim. Development and test of a methodology for obtaining a bioavailable strontium map suitable for studying migrations and mobility in the Bronze Age in the Southern Trans-Urals. Methods. Sampling was conducted in 73 loci located in a uniform network in a 25 ± 5 km grid and in 22 additional loci (transects along the intermediate lines in places of complex geological structure). The determination of strontium content was carried out by the ICP-MS method. The strontium isotope composition was measured using an inductively coupled plasma magneto-sector multi-collector mass spectrometer (MC-ICP-MS). Statistical methods included analysis with stem-and-leaf plots; Student’s t-test; ordinary kriging (the mean is unknown) with linear semivariogram; analysis of correlation according to Pearson’s test. Results. The surveyed area is 36 sq. km2. The sample size is 357. Samples for different types have similar mean and median values; the differences occur in the fourth fractional digit. Criterion 1 (n ≥ 0.001) can be used to determine local variability, and Criterion 2 (0.706 < n < 0.716) can be used to assess the origin of ancient individuals, animals, and archaeological objects. The interpolated maps for each sample type were created. All bioavailable strontium maps show similar spatial patterns. Cross-validation revealed areas of the lowest accuracy. Conclusions. The similarity of the distribution of anomalies on the maps of different types suggests the feasibility of the sampling technique. There is a clear tendency for the zones of elevated 87Sr/86Sr values to be associated with the older lithology (0.7106, mean). The lower values (0.7091 ± 0.002) are associated with the younger lithology. Given the complex geological structure and a wide range of rocks in the study area, a positive result is the low differentiation of the zoning of the identified anomalies, which correspond to large structural-formation zones of the Urals. The presented method demonstrates its suitability for studying sublatitudinal migrations of the ancient population of the Southern Trans-Urals.

About the Authors

A. V. Epimakhov
South Ural State University
Russian Federation

76 Lenin av., Chelyabinsk 454080



I. V. Chechushkov
South Ural State University
Russian Federation

76 Lenin av., Chelyabinsk 454080



D. V. Kiseleva
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Academician Vonsovsky st., Ekaterinburg 620110



M. N. Ankushev
South Urals Federal Research Center of Mineralogy and Geoecology, UB RAS, Institute of Mineralogy
Russian Federation

Ilmeny Reserve Area, Miass, Chelyabinsk region 456317



P. S. Ankusheva
South Urals Federal Research Center of Mineralogy and Geoecology, UB RAS, Institute of Mineralogy; South Ural State Humanitarian Pedagogical University
Russian Federation

Ilmeny Reserve Area, Miass, Chelyabinsk region 456317;

69 Lenin av., Chelyabinsk 454080



References

1. Bataille C.P., Crowley B.E., Wooller M.J., Bowen G.J. (2020) Advances in global bioavailable strontium isoscapes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 555, 109849. https://doi.org/10.1016/j.palaeo.2020.109849

2. Chechushkov I., Epimakhov A., Ankushev M., Ankusheva P., Kiseleva D. (2022) Interpolated data on bioavailable strontium in the southern Trans-Urals. Zenodo. https://zenodo.org/records/7370066

3. Corti C., Rampazzi L., Ravedoni C., Giussani B. (2013) On the use of trace elements in ancient necropolis studies: Overview and ICP-MS application to the case study of Valdaro site, Italy. Microchem. J., 110, 614-623.

4. Faure G. (1989) Fundamentals of isotope geology. Moscow, Mir Publ., 590 p. (In Russ.)

5. Gerling С. (2015) Prehistoric Mobility and Diet in the West Eurasian Steppes 3500 to 300 BC: An Isotopic Approach. Berlin, München, Boston, De Gruyter, 402 p. https://doi.org/10.1515/9783110311211

6. Gorozhanin V.M. (1998) Primary isotopic composition of strontium in igneous complexes of the Southern Urals. Magmatism and geodynamics. Ekaterinburg, UB RAS, 98-108. (In Russ.)

7. Hajj F., Poszwa A., Bouchez J., Guérold F. Radiogenic and “stable” strontium isotopes in provenance studies: A review and first results on archaeological wood from shipwrecks. J. Archaeol. Sci., 86, 24-49. https://doi.org/10.1016/j.jas.2017.09.005

8. Holt E., Evans J.A., Madgwick R. (2021) Strontium (<sup>87</sup>Sr/<sup>86</sup>Sr) mapping: A critical review of methods and approaches. Earth-Sci. Rev., 216, 103593, https://doi.org/10.1016/j.earscirev.2021.103593

9. http://georem.mpch-mainz.gwdg.de/ : [website].

10. https://doi.org/10.1594/PANGAEA.950380 : [website].

11. Isaaks E.H., Srivastava R.M. (Eds) (1989). Applied Geostatistics, N. Y., Oxford University Press New York, 582 p.

12. Journel A.G. (1989) Fundamentals of Geostatistics in Five Lessons, American Geophysical Union Washington.

13. Kasyanova A.V., Streletskaya M.V., Chervyakovskaya M.V., Kiseleva D.V. (2019) A method for <sup>87</sup>Sr/<sup>86</sup>Sr isotope ratio determination in biogenic apatite by MC-ICP-MS using the SSB technique. AIP Conference Proceedings, 2174, 020028. https://doi.org/10.1063/1.5134179

14. Koryakova L., Epimakhov A.V. (2014) The Ural and Western Siberia in the Bronze and Iron Age. Cambridge, Cambridge University Press, 408 p. https://doi.org/10.1017/CBO9780511618451

15. Kozlov V.I., Makushin A.A., Shalaginov V.V. (2001) Geological map of the Russian Federation and adjacent territory of the Republic of Kazakhstan. Scale 1 : 1,000,000. Map of pre-Quaternary formations. Sheet N-40, (41). (Ufa). LLC “Bashkirgeologia”. (In Russ.)

16. Kristiansen K. (2022) Archaeology and the Genetic Revolution in European Prehistory (Elements in the Archaeology of Europe). Cambridge, Cambridge University Press, 100 p. https://doi.org/10.1017/9781009228701

17. Kuznetsov A.B., Semikhatov M.A., Gorokhov I.M., Mel’nikov N.N., Konstantinova G.V., Kutyavin E.P. (2003) Sr isotopic composition in carbonate rocks of the Karatavskaya Group of the Southern Urals and the standard curve of <sup>87</sup>Sr/<sup>86</sup>Sr ratio variations in the Late Riphean Ocean. Stratigr. Geol. Korrel., 11(5), 3-39. (In Russ.)

18. Levit A.I. (2005) Southern Urals: geography, ecology, nature management. Chelyabinsk, YuUKI Publ., 246 p. (In Russ.)

19. Malainey M.E. (2011) A Consumer’s Guide to Archaeological Science: Analytical Techniques (Manuals in Archaeo logical Method, Theory and Technique). N. Y., Springer Science+Business Media, LLC, 603 p. https://doi.org/10.1007/978-1-4419-5704-7

20. Maurer A.-F., Galer S.J.G., Knipper C., Beierlein L., Nunn E.V., Peters D., Tütken T., Alt K.W., Schöne B.R. (2012) Bioavailable <sup>87</sup>Sr/<sup>86</sup>Sr in different environmental samples – Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci. Total Environ., 433, 216-229. https://doi.org/10.1016/j.scitotenv.2012.06.046

21. Muynck D.D., Huelga-Suarez G., Heghe L.V., Degryse P., Vanhaecke F. (2009) Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J. Analytic. Atom. Spectrom., 24, 1498-1510. https://doi.org/10.1039/B908645E

22. Oliver M.A. (1990) Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Systems, 4, 313-332. https://doi.org/10.1080/02693799008941549

23. Price T.D., Burton J.H., Bentley R.A. (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry, 44(1), 117-135. https://doi.org/10.1111/1475-4754.00047

24. Puchkov V.N. (2000) Paleogeodinamics of the Southern and Middle Urals. Ufa, Dauria Publ., 146 p. (In Russ.)

25. Slovak N.M., Paytan A. (2011) Applications of Sr Isotopes in Archaeology. (Ed. M. Baskaran). Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry. Berlin. Heidelberg, Springer-Verlag, 743-768. https://doi.org/10.1007/978-3-642-10637-8_35

26. Snoeck C., Ryan S., Pouncett J., Pellegrini M., Claeys P., Wainwright A.N., Mattielli N., Lee-Thorp J.A., Schulting R.J. (2020) Towards a biologically available strontium isotope baseline for Ireland. Sci. Total Environ., 712, 136248. https://doi.org/10.1016/j.scitotenv.2019.136248.

27. Spadea P., D’Antonio M., Kosarev A., Gorozhanina Y., Brown D. (2002) Arc-continent collision in the Southern Urals: Petrogenetic aspects of the Forearc-arc complex. Mountain Building in the Uralides. Washington, American Geophysical Union, 101-134. https://doi.org/10.1029/132GM07

28. Tevelev A.V. (2003) Middle-Late Paleozoic development of the Ural-Kazakhstan folded system. Doct. geol. and min. sci. diss. Moscow, Publishing house of Moscow State University, 406 p. (In Russ.)

29. Tevelev A.V., Kosheleva I.A., Burshtein E.F., Teve lev A.V., Popov V.S., Kuznetsov I.E., Korotaev M.V., Georgievskii B.V., Osipova T.A., Pravikova N.V., Sereda V.V. (2018) State Geological Map of the Russian Fede ration. Scale 1 : 200,000. Second edition. Series South Ural. Sheet N-41-XXV (Kartaly). Explanatory note. Moscow, Moscow branch of FSBI “VSEGEI”, 175 p. (In Russ.)

30. Thomsen E., Andreasen R. (2019) Agricultural lime disturbs natural strontium isotope variations: Implications for provenance and migration studies. Sci. Adv., 5(3), eaav8083. https://doi.org/10.1126/sciadv.aav808

31. Vinogradov V.I., Shcherbakov S.A., Gorozhanin V.M., Gol’tsman Yu.V., Buyakaite M.I. (2000) Age of metamorphites of the East Ural uplift: Sm-Nd- and Rb-Sr-isotope dating. Dokl. Akad. Nauk, 371(6), 784-787. (In Russ.)

32. West J.B., Sobek A., Ehleringer J.R. (2008) A simplified GIS approach to modeling global leaf water isoscapes. PLoS One, 3(6), e2447. https://doi.org/10.1371/journal.pone.0002447


Review

For citations:


Epimakhov A.V., Chechushkov I.V., Kiseleva D.V., Ankushev M.N., Ankusheva P.S. Mapping of bioavailable 87Sr/86Sr in the Southern Trans-Urals. LITHOSPHERE (Russia). 2023;23(6):1079-1094. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-6-1079-1094

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)