Age and generation conditions of quartz crystal deposits in the Subpolar Urals
https://doi.org/10.24930/1681-9004-2023-23-6-982-1005
Abstract
Research subject. The Dodo and Puiva quartz crystal deposits in the Neroiskiy mineral province (Subpolar Urals) were studied. Although these deposits have received sufficient research attention, a number of issues remain to be elucidated, including the age of crystal-bearing mineralization and the age of host rocks. Aim. In this work, we aim to determine the age of the metasomatites that bear quartz crystal mineralization and to develop a model of the formation of the Dodo and Puiva deposits. Materials and Methods. 40Ar/39Ar dating was carried out according to the method described by A.V. Travin et al. The argon isotope composition was measured on a Micromass 5400 mass spectrometer (IGM SB RAS). Results. Microprobe studies of the mineralogy of the Dodo and Puiva quartz crystal deposits were carried out. The temperatures of meta-somtaite formation were determined to range within 339–364°C. Six main structural and morphological types of quartz veins were identified and described. The 40Ar/39Ar ages of mica of quartz crystal deposits and host metamorphic schists were determined. Reliable plateaus were obtained, the values of which ranged within 251–257 Ma and agreed with each other within the deviation (average for 4 dates is 255 ± 2 Ma). Conclusion. A new model for the formation of quartz crystal deposits in the Subpolar Urals is proposed. The obtained 40Ar/39Ar ages correspond to the period of the post-orogenic extension of the Urals. At that time, a system of meridional grabens and rifts was formed in the Urals and in the West Siberian Plate. At the same time, and as a result of the same stretching impulse, large blocks of the middle crust (granite, schist, etc.) were brought to the Earth’s surface in the Urals. During the rise of deep blocks, at a depth of 10 km, a sharp, approximately 3-fold drop in fluid pressures (from lithostatic to hydrostatic) and a strong decrease in temperatures due to adiabatic expansion and the throttling effect occurred. The obtained 40Ar/39Ar ages (255 Ma) reflect not only the age of the quartz crystal deposits of the Subpolar Urals, but also place the moment of rise of the entire Central Ural uplift above a depth of 10 km, i.e., to the level of the upper cortex.
Keywords
About the Authors
E. V. BurlakovRussian Federation
15 Academician Vonsovsky st., Ekaterinburg 620110
K. S. Ivanov
Russian Federation
15 Academician Vonsovsky st., Ekaterinburg 620110
S. V. Berzin
Russian Federation
15 Academician Vonsovsky st., Ekaterinburg 620110
A. V. Travin
Russian Federation
3 Academician Koptyug av., Novosibirsk 630090;
20 K. Marks av., Novosibirsk 630073
D. A. Khanin
Russian Federation
Chernogolovka 142432
References
1. Andreichev V.L. (1999) Isotopic geochronology of the pre-Uralides of the Subpolar Urals. Syktyvkar, IG Komi NTs, 48 p. (In Russ.)
2. Baksi A.K., Archibald D.A., Farrar E. (1996) Intercalibration of 40 Ar/ 39 Ar dating standards. Chem. Geol., 129, 307-324.
3. Bukanov V.V. (1974) Rock crystal of the Subpolar Urals. Leningrad, Nauka Publ., 212 p. (In Russ.)
4. Bukanov V.V., Burlakov E.V., Kozlov A.A., Pozhidaev N.A. (2012) Subpolar Urals: minerals of quartz-crystal veins. Mineralogicheskii almanakh, 17(2), 136 p. (In Russ.)
5. Burlakov E.V. (1987) Mineralogical and geochemical features of the zones of ore-controlling ruptures of one of the hydrothermal deposits of the Urals. Mineralogy of ore-bearing territories of the European North-East of the USSR. Tr. IG Komi NTs UrO AN SSSR, vyp. 58, 69-77. (In Russ.)
6. Burlakov E.V. (1995) Dodo: Alpen Klufte im Polur-Ural. Lapis, (3), 13-35.
7. Burlakov E.V. (1999a) The Dodo deposit Subpolar Urals, Russia. Mineralog. Rec., 30(6), 427-442.
8. Burlakov E.V. (1999b) The Puiva deposit Subpolar Urals, Russia. Mineralog. Rec., 30(6), 451-465.
9. Burlakov E.V., Skobel L.S. (1988) Quartz veins of one of the regions of the Urals. Tr. IG Komi NTs UrO AN SSSR, vyp. 63, 55-66. (In Russ.)
10. Cathelineau M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner., 23(4), 471-485.
11. Chugaev A.V., Chernyshov I.V., Gamyanin G.N., Bortnikov N.S., Baranova A.N. (2010) Rb-Sr isotopic systematic of hydrothermal minerals, age, and matter sources of the Nezhdaninskoe Gold Deposit (Yakutia). Dokl. Earth Sci., 434(2), 1337-1341 (translated from Dokl. AN, 434(4), 534-539). https://doi.org/10.1134/S1028334X10100107
12. Dembovsky B.Ya. (2000) Legend of the North Ural series of sheets of Gosgeolkarta-200. Vorkuta. (In Russ.)
13. Dodson M.H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol., 40, 259-274.
14. Dushin V.A., Serdyukova O.P., Malyugin A.A., Kozmin V.S., Nikulina I.A., Burmako P.L., Demina L.A., Prokopchuk D.I., Abaturova I.V. (2018) State Geological Map of the Russian Federation at a scale of 1 : 200 000. 2nd ed. Series North Ural. Sheet P-40-VI (Telpos-Iz). Explanatory note. St.Petersburg, VSEGEI, 216 p. (In Russ.)
15. Fleck R.J., Sutter J.F., Elliot D.H. (1977) Interpretation of discordant 40 Ar/ 39 Ar age – spectra of Mesozoic tholeiites from Antarctica. Geochim. Cosmochim. Acta, 41, (15-32).
16. Gesse V.N., Dashkevich G.I. (1990) State geological map of the USSR, scale 1 : 200 000. Series North Ural. Sheet Q-40-XXXVI (Neroika). Explanatory note. Leningrad, VSEGEI, 143 p. (In Russ.)
17. Hodges K.V. (2003) Geochronology and Thermochronology in Orogenic Systems. Treatise on Geochemistry. Oxford, Elsevier, 3, 263-292. https://doi.org/10.1016/B0-08-043751-6/03024-3
18. Ivanov K.S. (1998а) The main features of the geological history (1.6–0.2 billion years) and the structure of the Urals. Ekaterinburg, UrO RAN, 252 p. (In Russ.)
19. Ivanov K.S. (1998б) The modern structure of the Urals is the result of post-Paleozoic stretching of the earthʼs crust. Geol. Geofiz., 39(2), 204-210. (In Russ.)
20. Ivanov K.S. (2020) The allocation of the Urals Paleozoic continental foot facies. Izv. Komi NTs UrO RAN. Ser. Nauki o Zemle, (1), 43-48. (In Russ.) https://doi.org/10.19110/1994-5655-2020-1-43-48
21. Ivanov K.S., Erokhin Y.V. (2019) On time of the Triassic rifts system origin in Western Siberia. Dokl. Earth Sci., 486(1), 521-524 (translated from Dokl. AN, 486(1), 88-92).
22. Ivanov K.S., Fedorov Yu.N., Erokhin Yu.V., Ponomarev V.S. (2016б) Geological structure of the basement of the Ural part of the West Siberian oil and gas megabasin. Ekaterinburg, IGG UrO RAN, 302 p. (In Russ.)
23. Ivanov K.S., Fedorov Yu.N., Koroteev V.A., Pecherkin M.F., Kormiltsev V.V., Pogromskaya O.E., Ronkin Yu.L., Erokhin Yu.V. (2003) The Urals-Western Siberia structure and nature of the conjunction zone. Dokl. AN, 393(5), 647-651. (In Russ.)
24. Ivanov K.S., Panov V.F., Likhanov I.I., Kozlov P.S., Ponomarev V.S., Hiller V.V. (2016a) Precambrian of the Urals. Gorn. Vedomosti, 148(9), 4-21. (In Russ.)
25. Ivanov S.N., Ivanov K.S. (1993) Hydrodynamic Zoning of the Earth’s crust and its Significance. J. Geodynam., 17(4), 155-180.
26. Ivanov S.N., Ivanov K.S. (2018) Rheological mo del of Earth’s crust (model of third generation). Lithosphere (Russia), (4), 500-519. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-4-500-519
27. Jowett E.C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27-29, 1991). Program with Abstracts 16. Toronto, A62.
28. Karetin Yu.S. (1965) On the role of shear dislocations in the formation of the Lower Mesozoic depressions and the structure of the eastern slope of the Urals. Izv. AN SSSR. Ser. Geol., (10), 45-62. (In Russ.)
29. Kranidiotis P., MacLean W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol., 82, 1898-1911. https://doi.org/10.2113/gsecongeo.82.7.1898
30. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V. (2005) Pre-Ordovician granitoids of the Timan-Ural region and the evolution of protouralide-timanides. Syktyvkar, Geoprint Publ., 100 p. (In Russ.)
31. Li X., Watanabe Y., Wang C., Hirano H., Zhang Y. (2007) The age of the Donghai rock crystals (clear quartz), eastern China: Constraint from biotite Ar-Ar geochronology. Bull. Geol. Survey Japan, 58(1/2), 1-6. https://doi.org/10.9795/bullgsj.58.1
32. Makhlaev L.V. (1996) Granitoids of the north of the Central Ural uplift: Polar and Subpolar Urals. Ekaterinburg, UrO RAN, 149 p. (In Russ.)
33. Ogorodnikov V.N., Polenov Yu.A. (2012) A model of formation of collision quartz-vein formations of the Urals. News of the Ural State Mining University, (27-28), 8-13.
34. Perchuk A.L., Plechov P.Yu., Sazonova L.V., Safonov O.G., Tikhomirov P.L., Shur M.Yu. (2015) Fundamentals of petrology of magmatic and metamorphic processes. Moscow, KDU, 472 p. (In Russ.)
35. Pettke Th., Diamond L.W. (1995) Rb-Sr isotopic analysis of fluid inclusions in quartz: evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochim. Cosmochim. Acta, 59(19), 4009-4027.
36. Puchkov V.N., Ivanov K.S. (2020) Tectonics of the Northern Urals and Western Siberia: general history of development. Geotectonics, 54(1), 35-53 (translated from Geotektonika, (1), 41-61). https://doi.org/10.1134/S0016852120010100
37. Pystin A.I., Pystina Yu.A. (2010) Granitoid complexes and geochronology of granite formation processes in the Subpolar Urals. Magmatism and metamorphism in the history of the Earth. Materials of the XI All-Russian Petrographic Conference. (Ed. by V.A. Koroteev). V. 2. Ekaterinburg, IGG UrO RAN, 163-164. (In Russ.)
38. Pystin A.M. (1994) Polymetamorphic complexes of the western slope of the Urals. St.Petersburg, Nauka Publ., 209 p. (In Russ.)
39. Pystin A.M., Andreichev V.L., Antoshkina A.I., Makhlaev L.V., Udoratin V.V., Golubeva I.I., Eliseev A.I., Kozyreva I.V., Konanova N.V., Kulikova K.V., Lyubozhenko L.N., Lyutoev V.A., Nikulova N.Yu., Noskova N.N., Ponomareva T.A., Pystina Yu.I., Sandula A.N., Sila ev V.I., Soboleva A.A., Timonin N.I. (2008) Lithosphere of the Timan-North Ural region: Geological structure, substance, geodynamics. Syktyvkar, Geoprint Publ., 234 p. (In Russ.)
40. Pystin A.M., Pystina Yu.I., Ulyasheva N.S., Grakova O.V. (2019) U-Pb dating of detrital zircons from basal Post Paleoproterozoic metasediments in the Subpolar and Polar Urals: evidence for a Cryogenian, not Mesoproterozoic age. Int. Geol. Rev., 62(17), 2189-2202. https://doi.org/10.1080/00206814.2019.1689533
41. Rasulov A.T. (1982) Tectonics of the early Mesozoic basins of the eastern slope of the Urals. Sverdlovsk, IGG UNTs AN, 43 p. (In Russ.)
42. Rasulov A.T., Bankwitz P., Bankwitz E. (1997) Triassische Grabenbildung und altkimmerische Deformation am Ostrand der Osteuropäischen Tafel. Z. Geol. Wiss., 25(1/2), 203-228.
43. Shalnykh V.S. (1971) Transverse structures of the Subpolar Urals. Voprosy tektoniki Urala, (92), 80-86. (In Russ.)
44. Shepherd T.J., Darbyshire D.P.F. (1981) Fluid inclusion Rb-Sr isochrons for dating mineral. Nature, 290, 578-579.
45. Skobel L.S., Burlakov E.V. (1991) The role of substitution in the formation of quartz veins in the Subpolar Urals. Izv. AN SSSR. Ser. Geol., (3), 146-152. (In Russ.)
46. Smirnov V.N., Ivanov K.S. (2019) Structural connections between the Urals and Western Siberia: a common stage of formation at the Permian-Triassic boun dary. Dokl. Earth Sci., 488(1), 1051-1054 (translated from Dokl. AN, 488(3), 294-297). https://doi.org/10.1134/S1028334X19090307
47. Smirnov V.N., Ivanov K.S., Travin A.V. (2019) 40 Ar/ 39 Ar age of rock deformations across the Bazhenov suture zone (eastern border of the Middle Urals). Lithosphere (Russia), (2), 242-249. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-2-242-249
48. Soboleva A.A., Kuzenkov N.A., Udoratina O.V., Larionov A.N., Matukov D.I., Presnyakov S.L. (2005) Age of zircons from granites of the core of the Khobeiz granitegneiss dome (Subpolar Urals). Origin of igneous rocks. Mater. int. petrog. meeting. Apatity, KolNTs RAN, 236-238. (In Russ.)
49. Steiger R.H., Yager E. (1977) Subcomission on Geochronology Convention on the use of decay constants in geo- and cosmochronology. Earth. Planet. Sci. Lett., 36, 359-362.
50. Stratigraphic schemes of the Urals (Precambrian, Paleozoic). (1993) Ekaterinburg, Interdepartmental Stratigraphic Committee of Russia, 151 diagrams. (In Russ.)
51. Surkov V.S., Kazakov A.M., Devyatov V.P., Smirnov L.V. (1997) Lower-Middle Triassic rift complex of the West Siberian basin. Otechestvennaya Geologiya, (3), 31-37. (In Russ.)
52. The main features of the geological structure and mine ral resource potential of the Northern, Subpolar and Polar Urals. (2010) (Eds A.F. Morozov, O.V. Petrov, A.N. Molgunov). St.Petersburg, VSEGEI, 274 p. (In Russ.)
53. Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B. (2009) Thermochronology of the Chernorud granulite zone, Olʼkhon region, Western Baikal area. Geochem. Int., 47(11), 1107-1124 (translated from Geokhimiya, (11), 1181-1199). https://doi.org/10.1134/S0016702909110068
54. Udoratina O.V., Soboleva A.A., Kuzenkov N.A., Rodionov N.V., Presnyakov S.L. (2006) Age of granitoids in the Manʼkhambo and Ilʼyaiz plutons, the Nor thern Urals: U-Pb data. Dokl. Earth Sci., 407(2), 284-289 (translated from Dokl. AN, 406(6), 810-815). https://doi.org/10.1134/S1028334X06020309
55. Vernikovskaya A.E., Vernikovsky V.A., Matushkin N.Yu., Polyansky O.P., Travin A.V. (2009) Thermochronological models for the evolution of a-type leucogranites in the Neoproterozoic collisional orogen of the Yenisei ridge. Russ. Geol. Geophys., 50(5), 438-452 (translated from Geologiya i Geofizika, 50(5), 576-594). https://doi.org/10.1016/j.rgg.2009.04.002
56. Vodolazskaya V.P., Lvov B.K., Larin A.O. (2011) Once again on the age and genesis of granitoids in the Subpolar Urals. Otechestvennaya Geologya, (3), 71-79. (In Russ.)
57. Vodolazskaya V.P., Shergina Yu.P., Kotov K.N. (1999) Age and genesis of granitoids in the Subpolar Urals. Otechestvennaya Geologya, (5), 48-55. (In Russ.)
58. Vodolazskaya V.P., Teterin I.P., Kirillov V.A., Luk’yanova L.I., Petrov G.A., Stefanovsky V.V., Morozov G.G., Zhdanov A.V., Zhiganov A.V., Stryapunina E.V., Es’kin A.G., Petrova T.A., Verbitsky I.V., Verbitskaya N.V. (2015) State Geological Map of the Russian Federation. Scale 1 : 1 000 000. 3rd generation. Ural series. Sheet O-40. Perm. Explanatory letter. St.Petersburg, VSEGEI, 497 p. (In Russ.)
59. Wang D.H., Xu J., Chen Y.C., Li H.Q., Yu J.J. (2003) Dating on the eclogite hosted quartz crystaland its significance for tracing the exhumation history of the UHP belt in north Jiangsu Province. Acta Geol. Sinica, 77, 544-548.
60. Yudin D., Murzintsev N., Travin A., Alifirova T., Zhimulev E., Novikova S. (2021) Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40 Ar/ 39 Ar Dating, Laboratory Experiment, Numerical Simulation. Minerals, 11(2). https://doi.org/10.3390/min11020192
Review
For citations:
Burlakov E.V., Ivanov K.S., Berzin S.V., Travin A.V., Khanin D.A. Age and generation conditions of quartz crystal deposits in the Subpolar Urals. LITHOSPHERE (Russia). 2023;23(6):982-1005. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-6-982-1005