Preview

LITHOSPHERE (Russia)

Advanced search

First data on rare earth mineralization in acid rock varieties of the Shatak complex (Southern Urals)

https://doi.org/10.24930/1681-9004-2023-23-5-910-929

Abstract

Research subject. Acid rock varieties of the Shatak complex were studied. Materials and methods. The reseach object included the previously unknown abundant mineralization represented by rare earth minerals. The concentration of petrogenic oxides was determined by the X-ray fluorescence method at the IG UFRC RAS (Ufa) using a VRA-30 spectrometer (Carl Zeiss, Germany) with an X-ray tube with a W-anode (30 kV, 40 mA). The amount of rare earth elements in the rocks of the studied area was determined by the ICP-MS method at the Central Research Institute of VSEGEI (St. Petersburg). The mineralogy was studied using a Tescan Vega Compact scanning electron microscope equipped with an Xplorer Oxford Instruments energy-dispersive analyzer (IG UFRC RAS, Ufa). Results. The studied rocks were diverse in chemical composition, varying from alkaline varieties (trachydacites) to low-alkaline rhyolites. These rocks belong to a highalumina type characterized by potassium specialization and a low agpaitic coefficient. It is assumed that the felsic varieties are subvolcanic formations, and the term “rhyolites” in this case characterizes the chemical composition of the rocks, but not their genesis. The amount of rare earth elements in the studied rocks is subject to significant fluctuations, varying from 60.81 g/t to 1625.39 g/t; moreover, their distribution is characterized by significant differentiation. In general, the rocks belong to a contrasting basalt-rhyolitic series, and their genesis is due to the differentiation of magma in the intermediate chamber. Numerous rare-earth minerals were found in the rocks, inlcuding allanite-(Ce), monazite-(Ce), monazite-(La), nioboeshinit-(Y), aeschinite-(Y), talena-(Dy), talena-(Nd), synchisite-(Ce) and Ce–La–Fe oxide. Conclusions. The presence of paragenetic associations of rare-earth minerals, such as allanite-(Ce) + aeschinite-(Y) + nioboaeschinite-(Y) and allanite-(Ce) + talena-(Dy) + talena-(Nd), indicate the formation of rare-earth mineralization in the course of a single process. The described type of mineralization has no analogues on the western slope of the Southern Urals, which substantiates the need for further research.

About the Authors

S. G. Kovalev
Institute of Geology, UFRC RAS
Russian Federation

16/2 Karl Marx st., Ufa 450077



S. S. Kovalev
Institute of Geology, UFRC RAS
Russian Federation

16/2 Karl Marx st., Ufa 450077



A. A. Sharipova
Institute of Geology, UFRC RAS
Russian Federation

16/2 Karl Marx st., Ufa 450077



References

1. Alekseev A.A., Alekseeva G.V., Timofeeva E.A. (2003) Monazite mineralization and prospects for rare earth mineralization in the Riphean deposits of the Bashkir meganticlinorium. Geology, minerals and problems of ecology of Bashkortostan. (Ed. by V.N. Puchkov, D.N. Salikhov). V. 2. Ufa, 112-115. (In Russ.)

2. Alekseev A.A., Timofeeva E.A. (2007) Rare earth-phosphate mineralization in metaterrigenous strata of the Riphean Bashkir meganticlinorium. Geol. sbornik, (3), 194-195. (In Russ.)

3. Bulakh A.G. (1967) Guidelines and tables for calculating mineral formulas. Moscow, Nedra Publ., 141 p. (In Russ.)

4. Gshneidner K.A. (1965) Alloys of rare earth metals. Moscow, Mir Publ., 427 p. (In Russ.)

5. Hoog J.C.M. de, Gall L., D.H. Cornell (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol., 270(1-4), 196-215. https://doi.org/10.1016/j.chemgeo.2009.11.017

6. Paolo D.J. de (1981) Trace element and isotopic effects of combined wallrock assimilation and fracional crystallization. Earth Planet. Sci. Lett., 53(2), 189-202. https://doi.org/10.1016/0012-821X(81)90153-9

7. Delitsyn L.M. (2019) Distribution of TR2O3, P2O5 and Nb2O5 between two immiscible melts in the monazite– SiO2– NaF–Nb2O5–Fe2O3 system. Dokl. AN, 489(6), 599-605. (In Russ.)

8. Diagrams of the state of binary metal systems: Handbook. V. 1. (1996) (Ed. by N.P. Lyakishev). Moscow, Mashinostroenie, 992 p. (In Russ.)

9. Diagrams of the state of binary metallic systems: Handbook. V. 2. (1997) (Ed. by N.P. Lyakishev). Moscow, Mashinostroenie, 1024 p. (In Russ.)

10. Ernst R.E. (2014) Large Igneous Provinces. Cambridge, Cambridge University Press, 653 p.

11. Kobyashev Yu.S., Nikandrov S.N., Valizer P.M. (2000) Minerals of the Ilmensky mountains. Miass, IGZ UB RAN, 119 p. (In Russ.)

12. Kovalev S.G., Vysotskii I.V. (2006) A new type of noble metal mineralization in terrigenous rocks of the Shatak graben (western slope of the Southern Urals). Litologiya i Polez. Iskopaemye, (4), 415-421. (In Russ.)

13. Kovalev S.G., Vysotskii I.V. (2008) New data on the geology of the Shatak complex (western slope of the Southern Urals). Litologiya i Polez. Iskopaemye, (3), 280-289. (In Russ.)

14. Kovalev S.G., Kovalev S.S., Vysotsky S.I. (2017) Th-REE mineralization in Precambrian rocks of the Bashkir meganticlinorium: species diversity and genesis. Zap. RMo, (5), 59-79. (In Russ.)

15. Kovalev S.G., Vysotsky S.I., Kovalev S.S. (2018a) Model of formation of igneous rocks of the Shatak complex. Geol. vestn., (2), 3-13. https://doi.org/10.31084/2619-0087/2018-2-1. (In Russ.)

16. Kovalev S.S., Puchkov V.N., Kovalev S.G., Vysotsky S.I. (2018б) First data on the quantitative assessment of the Vendian metamorphism parameters of the eastern part of the Bashkir meganticlinorium. Dokl. AN, 483(3), 301-305. (In Russ.)

17. Kovalev S.G., Kovalev S.S. (2022) Xenotime mineralization in various structural and material complexes of the Bashkir meganticlinorium (Southern Urals). Zap. RMo, 151(1), 74-91. (In Russ.) https://doi.org/10.31857/S0869605522010075

18. Kozyreva I.V., Shvetsova I.V., Popova T.N. (2004) Finding of Nd-talena in the Subpolar Urals. Vestn. Komi NTs, (6), 2-3. (In Russ.)

19. Kranidiotis P., MacLean W.H. (1987) Systematic of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Econ. Geol., 82(7), 1808-1911. https://doi.org/10.2113/gsecongeo.82.7.1898

20. Krivovichev V.G., Gulʼbin Yu.L. (2022) Recommendations for the calculation and presentation of formulas of minerals according to chemical analyzes. Zap. RMo, 151(1), 114-124. (In Russ.) https://doi.org/10.31857/S0869605522010087

21. Loucks R.R. (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib. Mineral. Petrol., 125, 140-150.

22. Maslov A.V., Krupenin M.T., Ronkin Yu.L., Gareev E.Z., Lepikhina O.P., Popova O.Yu. (2004) Fine-grained aluminosiliciclastic formations of the stratotype section of the Middle Riphean in the Southern Urals: features of formation, composition and evolution of provenance sources. Litologiya i Polez. Iskopaemye, (4), 414-441. (In Russ.)

23. Maslov A.V., Gareev E.Z., Podkovyrov V.N., Kovalev S.G., Kotova L.N. (2018) Synrift sedimentary formations of the Mashak Formation of the Middle Riphean of the Southern Urals (brief lithochemical characteristics). Vestn. SPBGU. Nauki o Zemle, 63(3), 303-325. (In Russ.)

24. McDonough W.F., Sun S.S. (1995) Composition of the Earth. Chem. Geol., 120(3-4), 223-253. https://doi.org/10.1016/0009-2541%2894%2900140-4

25. Parnachev V.P., Rotarʼ A.F., Rotarʼ Z.M. (1986) Middle Riphean volcanogenic-sedimentary association of the Bashkir meganticlinorium (Southern Urals). Sverdlovsk, UNTs AN USSR, 105 p. (In Russ.)

26. Puchkov V.N. (2000) Paleogeodinamics of the Southern and Middle Urals. Ufa, Dauria Publ., 146 p. (In Russ.)

27. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (topical issues of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DesignPolygraphService, 280 p. (In Russ.)

28. Puchkov V.N., Bogdanova S.V., Ernst R., Kozlov V., Krasnobaev A.A., Soderlund U., Wingate M.T.D., Postnikov A.V., Sergeeva N.D. (2013) The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos, 174, 109-124.

29. Rassomakhin M.A., Kasatkin A.V. (2020) Additions to the cadastre of minerals of the Ilmensky mountains. Mineralogiya, 6(2), 18-26. (In Russ.) https://doi.org/10.35597/2313-545X-2020-6-2-2

30. Shapovalov Yu.B., Kotelʼnikov A.R., Suk N.I., Korzhinskaya V.S., Kotelʼnikova Z.A. (2019) Liquid immiscibility and problems of ore formation (according to experimental data). Petrology, 27(5), 577-597. (In Russ.) https://doi.org/10.31857/S0869-5903275577-597

31. Suk N.I. (2017) Liquid immiscibility in alkaline magmatic systems. Moscow, Universitetskaya Kniga Publ., 238 p. (In Russ.)


Review

For citations:


Kovalev S.G., Kovalev S.S., Sharipova A.A. First data on rare earth mineralization in acid rock varieties of the Shatak complex (Southern Urals). LITHOSPHERE (Russia). 2023;23(5):910-929. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-5-910-929

Views: 396


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)