Preview

LITHOSPHERE (Russia)

Advanced search

Generation and alteration conditions, fluid regime features of the ore-magmatic system of the South Saryshagan granite intrusion (Western Balkhash region)

https://doi.org/10.24930/1681-9004-2023-23-5-887-909

Abstract

Research subject. For the first time, the mineral composition, petro- and geochemical features, generation and metasomatic alteration conditions, fluid regime (based on the behavior of F, Sl, and S in apatites), and ore-generating potential of granitoids from the South Saryshagan intrusion (Western Balkhash) were studied. Materials and methods. X-ray fluorescence and atomic emission methods of rock analysis (drilling well core), as well as microprobe (polished sections) studies of mineral composition. Results. The rock composition was found to correspond to moderately alkaline granites, formed at a generation pressure of about 2 kbar and T = 670°C. Subsequent metasomatic transformations were mediumtemperature (313–350°C) and multistage, i.e., phyllitization followed by chloritization. The ferrous composition of chlorite and the confinement of its development area to fracture zones indicate the local scale of the process. Ore mineralization is mainly represented by chalcopyrite, occasionally containing Au. According to the morphology and composition features, apatites from granites can be divided into two groups, i.e., magmatogenic grains and products of their transformations. In a diagram of F-Cl-S ratios, most points of their composition lie in the fields of rocks productive of Cu-porphyry mineralization. Conclusions. Mineral associations and the analysis of F, Cl, and S behavior in apatites indicate changes in the composition of the fluid phase over time under the conditions of an open system. In apatites, sulfur accumulates to the maximum level (0.012 wt % S) simultaneously with an increase in the amount of Cl and a decrease in the amount of F. After S reaches this level, the Cl content in apatites decreases followed by a notable increase in F; as a result, the late portions of the fluid become depleted of F, but enriched with Cl and S. In general, the content of the latter two components is low, compared with that typical of rich Cu–porphyry systems. Since the amount of mobilized copper depends on both the contents of Cl and S in the fluid and the volume of this fluid (determined by the size of the intrusion itself; in our case, it is a small body), the predicted copper reserves in the upper horizons of the South Saryshagan intrusion are small.

About the Authors

G. Yu. Shardakova
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Academician Vonsovsky st., Ekaterinburg 620110



A. V. Korovko
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Academician Vonsovsky st., Ekaterinburg 620110



N. A. Antonishin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Academician Vonsovsky st., Ekaterinburg 620110



References

1. Bailey S.W. (1988) Chlorites: structures and crystal chemistry. Rev. Miner., 19, 347-403. Corpus ID: 133292286

2. Bakhshaliev T.V. (2016) Geological characteristics and the project of geological exploration within the Bie-Besobinskaya area of polymetallic ores (Republic of Kazakhstan). Bachelor’s work. Tomsk, TPU Research Institute, 113 p. (In Russ.)

3. Bardina N.Yu., Popov V.S. (1991) Systematics of metasomatic rocks and facies of metasomatism of shallow depths. Sov. Geol., (6), 48-56. (In Russ.)

4. Berger B.R., Mars J.C., Denning P.D., Phillips J.D., Hammarstrom J.M., Zientek M.L., Dicken C.L., Drew L.J. (2014) Porphyry copper assessment of western Central Asia. U.S. Geological Survey Scientific Investigations Report, 2010-5090-N, 219 p. https://doi.org/10.3133/sir20105090N

5. Cathelineau M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner., 23, 471-485.

6. Chiaradia M., Ulianov A., Kouzmanov K., Beate B. (2012) Why large porphyry Cu deposits like high Sr/Y magmas. Sci. Rep., (2), 685. https://doi.org/10.1038/srep00685

7. Condie K.C. (1973) Archean magmatism and crustal thickening. Geol. Soc. Amer. Bull., 84(9), 2981-2991.

8. Degtyarev K.E. (2012) Tectonic evolution of Early Paleozoic island-arc and continental crust formation in Caledonides of Kazakhstan’s. Moscow, GEOS Publ., 289 p. (In Russ.)

9. Ding S., Dasgupta R. (2017) The fate of sulfide during decompression melting of peridotite–implications for sulfur inventory of the MORB-source depleted upper mantle. Earth Planet. Sci. Lett., 459, 183-195. https://doi.org/10.1016/j.epsl.2016.11.020

10. Fershtater G.B. (1987) Petrology of major intrusive associations. Moscow, Nauka Publ., 232 p. (In Russ.)

11. Geological map of Kazakhstan. (2004) Scale 1 : 1,000,000. Almaty, MPR and OOS RK. (In Russ.)

12. Geological map of the USSR. (1970) Scale 1 : 200,000. The Balkhash series. Sheet L-34-XIV. Moscow, MinGeo USSR, Nedra Publ., 612 p. (In Russ.)

13. Geological map of pre-quaternary formations. (1978) Scale 1 : 1000,000. Sheet L-(42), (43) Balkhash. Moscow, Aerogeologiya Publ. (In Russ.)

14. Geological structure of Kazakhstan. (2000) Almaty, MPR and OOS RK, 394 p. (In Russ.)

15. Grabezhev A.I., Belgorodskii E.A. (1992) Productive granitoids and metasomatites of copper–porphyry deposits. Ekaterinburg, IGG UB RAS, 199 p. (In Russ.)

16. Grabezhev A.I., Shardakova G.Yu., Ronkin Yu.L., Azovskova O.B. (2017) Systematization of u-pb zircon ages of granitoids from the copper porphyry deposits on the urals. Lithosphere (Russia), 17(5), 113-126. (In Russ.) https://doi.org/10.24930/1681-9004-2017-17-5-113-126

17. Grabezhev A.I., Voronina L.K. (2012) Sulfur in apatite from rocks of copper-porphyry systems of the Urals. Tr. IGG Uro RAN, vyp. 159, 68-70. (In Russ.)

18. Hattori K.H., Keith J.D. (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Depos., 36, 799-806. https://doi.org/10.1007/s001260100209

19. Heinhorst J., Lehmann B., Ermolov P., Serykh V., Zhurutin S. (2000) Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics, 328, 69-87. PII: S0040-1951(00)00178-5

20. Hey M.H. (1954) A new review of the chlorites. Miner. Magaz., 224(XXX), 277-292.

21. Hollister V.F. (1975) An appraisal of the nature and source of porphyry copper deposits. Miner. Sci. Ing., 7(3), 225-233.

22. Izotov V.V., Skripchenko A.F., Zemzyulin D.P., Sklyarov N.D., Kudryavtsev Yu.K., Mel’nik S.F., Semenyuk N.S. (1983) Report on detailed search operations within the West Balkhash Synclinorium for 1978–1983. Jamantuz party. Dzhezkazgan region. Karaganda. (In Russ.)

23. Jowett E.C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting: Program with Abstracts, 16, A62.

24. Kay S.M., Mpodozis C. (2001) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, (11), 4-9. https://doi.org/10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2

25. Kholodnov V.V., Bushlyakov I.N. (2002) Halogens in endogenous ore formation. Ekaterinburg, EPD UB RAS Publ., 394 p. (In Russ.)

26. Kholodnov V.V., Seravkin I.B., Kosarev A.M., Konovalova E.V., Shagalov E.S. (2016) Distribution of halogens and sulfur in apatites of copper-porphyry deposits of the Southern Urals (new data). Mineralogiya, (1), 54-65. (In Russ.).

27. Konovalova E.V., Pribavkin S.V., Zamyatin D.A., Kholodnov V.V. (2013) Mineralizing elements (sulfur and halogens) in apatites of the Shartash massif and the Berezovsky gold deposit. Lithosphere (Russia), (6), 65-72. (In Russ.)

28. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. (2018) Halogens and sulfur in hydroxyl-containing minerals of the East Verkhotursky dioritegranodiorite massif with mineralization in the form of native copper (Middle Urals). Tr. IGG Uro RAN, vyp. 165, 189-193. (In Russ.)

29. Hey M.H. (1954) A new review of the chlorites. Miner. Magaz., 224(XXX), 277-292.

30. Kranidiotis P., MacLean W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfi de deposit, Matagami, Quebec. Econ. Geol., 82, 18981911.

31. Krivtsov A.I. (1983) Geological foundations of forecasting and prospecting for copper-porphyry deposits. Moscow, Nedra Publ., 255 p. (In Russ.)

32. Krivtsov A.I., Zvezdov V.S., Minina O.V., Migachev I.F. (2001) Porphyry copper deposits. Models of deposits of non-ferrous and precious metals. Moscow, TsNIGRI, 232 p. (In Russ.)

33. Lee C.-T.A., Luffi P., Chin E.J., Bouchet R., Dasgupta R., Morton D.M., Le Roux V., Yin Q.-z., Jin D. (2012) Copper systematics in arc magmas and implications for crust–mantle differentiation. science, 336, 64-68. https://doi.org/10.1126/science.1217313

34. Lee C.-T. A., Tang M. (2020) How to make porphyry copper deposits. Earth Planet. Sci. Lett., 529, 1-11. https://doi.org/10.1016/j.epsl.2019.115868

35. Liu Y., Comodi P. (1993) Some aspects of the crystalchemistry of apatites. Min. Mag., 57, 709-719.

36. Luchitskaya M.V. (2022) The composition, petrogenesis, and geodynamic setting of adakite magmatism: An overview. Geotectonics, 56(4), 486-519 (translated from Geotektonika, (4), 92-128). https://doi.org/10.1134/S0016852122040057

37. Mazurov A.V. (2003) Geodynamic conditions of formation of metallogenic complexes of Kazakhstan. Dis... doct. geol.-min. of sciences. Tomsk, TPU, 213 p. (In Russ.).

38. Makat D.K. (2017) Geodynamic and metallogenic patterns of the development of copper-porphyry mineralization of Central Kazakhstan from the standpoint of modern isotope geology. Dis... doct. geol.-min. of sciences. Karaganda, KGTU, 98 p. (In Russ.).

39. Poletaev A.I., Mel’nikov L.V., Nurtuganov P.M., Timofeeva S.N. (1983) Report “Assessment of prospects of Saryshagan and Sokur ore nodes” for 1980–1983 (final). Al-ma-Ata, MinGeo of the Kazakh SSR, KazIMS, 82 p. (In Russ., unpublished)

40. Popov V.S. (1977) Geology and genesis of copper and molybdenum-porphyry deposits. Moscow, Nauka Publ., 203 p. (In Russ.).

41. Pearce J.A., Harris N.B.W., Tindle A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956-983.

42. Peng G., Luhr J.F., McGee J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. Amer. Miner., 82, 1210-1224.

43. Plotinskaya O., Grabezhev A., Tessalina S., Seltman R., Groznova E., Abramov S. (2017) Porphyry deposits of the Urals: geological framework and metallogeny. ore Geol. Rev., 85, 153-173. https://doi.org/10.1016/j.oregeorev.2016.07.002

44. Pribavkin S.V., Korovko А.V., Shardakova G.Yu., Аntonishin А.V. (2020) Copper minerals from the oxidation zone of the Saryshagan Cu(Mo)-porphyry deposit (Western Balkhash region, Central Kazakhstan). Mineralogiya, (3), 58-67. (In Russ.) https://doi.org/10.35597/2313-545X-2020-6-1-5

45. Rafal’skii R.P. (1993) Solution–rock interaction in hydrothermal conditions. Moscow, Nauka Publ., 238 p. (In Russ.)

46. Richards J.P. (2009) Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37, 247-250. https://doi.org/10.1130/G25451A.1

47. Rielli A., Tomkins A.G., Nebel O., Raveggi M., Jeon H., Marti L., Avila J.N. (2018). Sulfur isotope and PGE systematics of metasomatised mantle wedge. Earth Planet. Sci. Lett., 497, 181-192. https://doi.org/10.1016/j.epsl.2018.06.012

48. Sazonov A.M. (2007) Petrography and petrology of metamorphic and metasomatic rocks. Krasnoyarsk, SFU, 324 p. (In Russ.)

49. Sazonov V.N. (1975) Listvenitization and mineralization. Moscow, Nauka Publ., 175 p. (In Russ.)

50. Seravkin I.B., Minibayeva K.R., Rodicheva Z.I. (2011) Copper-porphyry mineralization of the Southern Urals (review). Geol. Coll., (9), 186-200. (In Russ.)

51. Seltmann R., Porter T.M. (2005) The porphyry Cu–Au–Mo deposits of Central Eurasia. 1. Tectonic, geologic and metallogenic setting, and significant deposits. Super porphyry copper & gold deposits: A global perspective. Adelaide, PGC Publishing, (2), 467-512.

52. Serukh V.I., Makat D.K (2017) About Geotectonic Position of Porphyry Copper Deposits in Central Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, 3(423), 44-53.

53. Shafigullina G.T., Znamenskii S.E., Kosarev A.M. (2020) Conditions for the formation of gold-porphyry mineralization of the Bolshoy Karan deposit (Southern Urals) according to chlorite geothermometry. Geol. Vestnik, (2), 45-53. (In Russ.) https://doi.org/10.31084/2619-0087/2020-2-4

54. Shardakova G.Yu., Korovko A.V., Pribilkin S.V., Antonishin A.V., Bazhikov M.B. (2019) Specifics of the composition of host rocks and oxidized ores of the Saryshagan copper-porphyry ore formation (Western Balkhash region, Central Kazakhstan): the first data. Tr. IGG Uro RAN, vyp. 166, 152-157. (In Russ.)

55. Shardakova G.Yu., Zamyatin D.A. (2017) Behavior of halogens and sulfur in hydroxyl-containing minerals from granitoids of the western slope of the Urals as an indicator of the potential productivity of ore-magmatic systems. Tr. IGG Uro RAN, vyp. 164, 193-198. (In Russ.)

56. Sharpenok L.V., Kostin A.E., Kukharenko E.A. (2013) TASdiagram sum of alkalis–silica for chemical classification and diagnostics of plutonic rocks. Regional’naya Geologiya i Metallogeniya, 56, 40-50. (In Russ.)

57. Shen P., Pan H., Seitmuratova E., Yuan F., Jakupova S.A. (2015) Cambrian Intra-Oceanic Subduction System in the Bozshakol Area, Kazakhstan. Lithos, 224-225, 61-77. https://doi.org/10.1016/j.lithos.2015.02.025

58. Sillitoe R.H. (2010) Porphyry copper systems. Econ. Geol., 105, 3-41. https://doi.org/10.2113/gsecongeo.105.1.3

59. Spiridonov E.M. (1995) Inversion plutogenic gold-quartz formation of the caledonides of the north of Central Kazakhstan. Geol. Rudn. Mestorozhd., 37(3), 179-207. (In Russ.)

60. Sun W., Ling M., Yang X., Fan W., Ding X., Liang H. (2010) Ridge subduction and porphyry copper–gold mineralization: an overview. Sci. China Earth Sci., 53, 475-484. https://doi.org/10.1007/s11430-010-0024-0

61. Valyashko V.M. (2009) Hydrothermal equilibria, phenomena of delamination and heterogenization of supercritical fluids. Modern problems of general and inorganic chemistry. Proceedings of the 2nd International Conference. Moscow, IONKh RAS Publishing House, 491-500. (In Russ.)

62. Valyashko V.M., Urusova M.A. (2010) Heterogenization of supercritical fluids and non-invariant critical equilibria in triple mixtures with one volatile (on the example of water-salt systems). Supercritical Fluids: Theory and Practice, (2), 28-44. (In Russ.)

63. Wilkinson J.J. (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci., 6, 917.

64. Zane A., Weiss Z. (1998) A procedure for classifying rock forming chlorites based on microprobe data. Rend. Fis. Acc. Lincei, 9, 51-56.

65. Zang W., Fyfe W.S. (1995) Chloritization of the hydrothermally altered bedrocks at the Igarapu Bahia gold deposit, Carajs, Brazil. Miner. Depos., 30, 30-38.

66. Zaplin G.V. (1956) Report of the Kurgan Geological Exploration Party for 1955–1956. Ministry of Geology and Subsoil Protection of the Kazakh SSR, South Kazakhstan Geological Department, 239 p. (In Russ., unpublished)

67. Znamenskii S.E., Ankusheva N.N., Artem’ev D.A. (2020) Formation conditions, composition and ore-forming sources of the Bolshoy Karan gold-porphyry deposit (the Southern Urals). Lithosphere (Russia), 20(3), 397-410. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-3-397-410

68. Zvezdov V.S. (2022) Models of copper-porphyry ore-magmatic systems and deposits for forecasting, prospecting and evaluation. Dis. ... doct. geol.-min. of sci. Moscow, TsNIGRI, 247 p. (In Russ.)


Review

For citations:


Shardakova G.Yu., Korovko A.V., Antonishin N.A. Generation and alteration conditions, fluid regime features of the ore-magmatic system of the South Saryshagan granite intrusion (Western Balkhash region). LITHOSPHERE (Russia). 2023;23(5):887-909. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-5-887-909

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)