Diamonds from V. Grib kimberlite pipe: Morphology and spectroscopic features
https://doi.org/10.24930/1681-9004-2023-23-4-549-563
Abstract
Research subject. The article presents the results of studying 500 diamond crystals from the core of exploration boreholes of crater and diatreme facies of the upper part of V. Grib kimberlite pipe. Crystals from tuffs and tuffites (crater), tufobreccia, autolith kimberlite breccia and porphyry kimberlite (diatreme) were analyzed separately. aim. To carry out a morphological and spectroscopic study of diamonds from V. Grib pipe. Materials and Methods. An VERTEX-70 spectrometer with a Hyperion 1000 microscope was used to determine the total nitrogen concentration and the share of nitrogen in the form of B defects (NBS), the absorption coefficients of the “platelet” bands B', 3107 cm-1. Images of photoluminescence (PL) were recorded at 360 nm excitation by an ALROSA VIEW PRO device, in order to detect inhomogeneities and color of PL. The PL spectra were recorded by a Horiba FL-3 spectrometer with an excitation of 350 and 450 nm at 300 K and by an InVia Renishaw spectrometer with an excitation of 405, 488 and 787 nm at 77 K. Results. The distribution of diamonds in terms of nitrogen concentration and NBS is specific; about 50% of the crystals are located along one isotherm, the proportion of low-nitrogen crystals is 5%. The PL spectra of 25% of crystals showed the lines of 883/885 nm of an elementary Ni-containing defect. Most crystals with this defect have less than 400 ppm of nitrogen, but they occupy the entire range according to NBS. This system is found in the spectra of 76% of twins and intergrowth; the latter are of 36% of diamonds with the lines 883/885 nm. The studied diamonds differ from those found in M.V. Lomonosov deposit in terms of a much lower content of crystals of cubic habitus (2 and 15%), a lower degree of dissolution (octahedra, respectively, 33 and 15%), a low proportion of colored stones, as well as a wide range of nitrogen concentration and NBS. Conclusion. The revealed features indicate the specific growth conditions of diamonds from V. Grib deposit, which differed from those of diamonds from other kimberlitic bodies of the East European, Siberian platforms and the Urals. The high proportion of low-nitrogen crystals and Ni-containing diamonds is a possible indicator for the presence of large CLIPPIR-type crystals.
About the Authors
E. A. VasilevRussian Federation
Evgenii A. Vasilev.
2 21 line, St. Petersburg 199106
V. N. Ustinov
Russian Federation
Viktor N. Ustinov.
168 Troitsky av., Arkhangelsk 163001
S. I. Leshukov
Russian Federation
Sergei I. Leshukov.
168 Troitsky av., Arkhangelsk 163001
R. N. Pendeliak
Russian Federation
Roman N. Pendeliak.
168 Troitsky av., Arkhangelsk 163001
E. V. Nikolaeva
Russian Federation
Evelina V. Nikolaeva.
47 Uritsky st., Arkhangelsk 163001
References
1. Baker J.M. (2003) Do isolated interstitial nickel atoms occur in diamond? A re-examination of the electron paramagnetic resonance defects NIRIM-1 and NIRIM-2. J. Phys.: Condens. Matt., 15(39), S2929.
2. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. (2010) Mineral Inclusions in Sublithospheric Diamonds from Collier 4 Kimberlite Pipe, Juina, Brazil: Subducted Protoliths, Carbonated Melts and Primary. Geophys. Res. abstracts, 12, EGU2010-5268-2012.
3. Garanin V.K., Garanin K.V., Kudriavtseva G.P., Palazhchenko O.V. (2006) Morphological and spectroscopic features of diamonds from deposit after V. Grib of the Arkhangelsk Diamondiferous Province: Paper 2. Spectroscopic features and connection to morphology of crystals. Izv. vuzov. Geologiya i razvedka, (3), 20-25. (In Russ.)
4. Garanin V.K., Kriulina G.Yu., Garanin V.K., Samosorov G.G. (2018) Diamonds of Arkhangelsk. New data. Moscow, IP Skorokhodov Publ., 232 p. (In Russ.)
5. Goss J.P., Briddon P.R., Hill V., Jones R., Rayson M.J. (2014) Identification of the structure of the 3107 cm−1 H-related defect in diamond. J. Phys.: Condens. Matt., 26, 1-6.
6. Kaminsky F.V., Zakharchenko O., Davies R. (2001) Super-deep diamonds from the Juina area, Mato Grossu. Contrib. Mineral. Petrol., 140, 734-753.
7. Khachatryan G.K., Verichev E.M., Garanin V.K., Garanin K.V., Kudriavtseva G.P., Palazhchenko O.V. (2006) Distribution of structure defects in diamonds from kimberlite pipe after V.P. Grib (Arkhangelsk Diamondiferous Province). Vestn. Mosk. un-ta. Ser. 4: Geologiya, (6), 29-37. (In Russ.)
8. Khachatryan G.K., Palazhchenko O.V., Garanin V.K., Ivannikov P.V. Verichev E.M. (2008) Origin of disequilibrium diamond crystals from Karpinsky-1 kimberlite pipe using data from cathode luminescence and infrared spectroscopy. Moscow Univ. Geol. Bull., 63(2), 86-94 (translated from Vestn. Mosk. un-ta. Ser. 4: Geologiya, (2), 38-45).
9. Khokhryakov A.F., Pal’yanov Yu.N. (2007) The evolution of diamond morphology in the process of dissolution: Experimental data. Amer. Miner., 92, 909-917.
10. Koptil V.I. (1994) Typomorphism of diamonds from placers of Siberian platform in connection with exploration problems. Cand. geol. and min. sci. diss. Abstract. Novosibirsk, IMIP SBr RAS, 34 p. (In Russ.)
11. Korolev N., Kopylova M., Gurney J.J., Moore A.E., Davidson J. (2018) The origin of Type II diamonds as inferred from Cullinan mineral inclusions. Mineral. Petrol., 112(1), 275-289.
12. Kostrovitsky S.I., Spetsius Z.V., Iakovlev D.V., Fon-der-Flaas G.S., Suvorova L.F., Bogush I.N. (2015) Atlas of primary diamond deposits of Yakutian kimberlite province. Mirny, MCT Publ., 480 p. (In Russ.)
13. Kriulina G.Yu., Iskrina A.V., Zedgenizov D.A., Bobrov A.V., Garanin V.K. (2019) The compositional peculiarities of microinclusions in diamonds from the Lomonosov deposit (Arkhangelsk province). Geochem. int., 57, 973-980 (translated from Geokhimiya, 64(9), 958-966).
14. Kupriyanov I.N., Khokhryakov A.F., Borzdov Yu.M., Palyanov Yu.N. (2016) HPHT growth and characterization of diamond from a copper–carbon system. Diam. Relat. Mater., 69, 198-206.
15. Kupriyanov I.N., Gusev V.A., Borzdov Yu.M., Kalinin A.A., Pal’yanov Yu.N. (1999) Photoluminescence study of annealed nickel- and nitrogen-containing synthetic diamond. Diam. Relat. Mater., (8) 1301-1309.
16. Malkovets V.G., Zedgenizov D.A., Sobolev N.V., Kuzmin D.V., Gibsher A.A., Shchukina E.V., Golovin N.N., Verichev E.M., Pokhilenko N.P. (2011) Contents of trace elements in olivines from diamonds and peridotite xenoliths of the V. Grib Kimberlite Pipe (Arkhangel’sk Diamondiferous Province, Russia). Dokl. Earth Sci., 436(2), 219-223.
17. Mineeva R.M., Speranskiǐ A.V., Titkov S.V., Zhilicheva O.M., Bershov L.V., Bogatikov O.A., Kudryavtseva G.P. (2004) Spectroscopic and morphological characteristics of diamonds from the Grib kimberlite pipe. Dokl. AN, 394(3), 384-388. (In Russ.)
18. Moore A.E. (2014) The origin of large irregular gem-quality type II diamonds and the rarity of blue type IIb varieties. South African J. Geol., 117(2), 219-236.
19. Moore A., Helmstaedt H. (2023) Origin of framesite revisited: Possible implications for the formation of CLIP-PIR diamonds. Earth Sci. Rev., 241, 104434. https://doi.org/10.1016/j.earscirev.2023.104434
20. Orwa J.O., Aharonovich I., Jelezko F., Balasubramanian G., Balog P., Markham M., Twitchen D.J., Greentree A.D., Prawer S. (2010) Nickel related optical centres in diamond created by ion implantation. J. appl. Phys., 107, 093512. https://doi.org/10.1063/1.3357374
21. Palazhchenko O.V. (2008) Integrated investigations of diamonds from deposits of the Arkhangelsk Diamondiferous Province: Generalization and genetic and applied consequences. Moscow univ. Geol. Bull., 63(2), 119-127 (translated from Vestn. Mosk. un-ta. Ser. 4: Geologiya, (2), 68-75). https://doi.org/10.3103/S0145875208020087
22. Palazhchenko O.V., Garanin V.K., Verichev E.M., Golovin N.N. (2007) The first data on composition of inclusions in diamond from deposit after V. Grib of the Arkhangelsk Diamondiferous Province. Izv. vuzov. Geologiya i razvedka, (3), 27-30. (In Russ.)
23. Palazhchenko O.V., Verichev E.M., Garanin V.K., Kudriavtseva G.P. (2006) Morphological and spectroscopic features of diamonds from deposit after V. Grib of the Arkhangelsk Diamondiferous Province: Paper 1. Morphology of diamond crystals. Izv. vuzov. Geologiya i razvedka, (2) 14-22. (In Russ.)
24. Rubanova E.V., Palazhchenko O.V., Garanin V.K. (2009). Diamonds from the V. Grib pipe, Arkhangelsk kimberlite province, Russia. Lithos, 112, 880-885.
25. Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., Wang W. (2016) Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354(6318), 1403-1405.
26. Stepanov A.S., Shatsky V.S., Zedgenizov D.A., Sobolev N.V. (2007) Causes of variations in morphology and impurities of diamonds from the Udachnaya pipe eclogite. Russ. Geol. Geophys., 48(9), 758-769 (translated from Geologiya i Geofizika, 48(9), 974-988). https://doi.org/10.1016/j.rgg.2007.01.003
27. Stepanov F.A., Emelyanova A.S., Rakevich A.L., Mironov V.P., Zedgenizov D.A., Shatskiy V.S., Martynovich E.F. (2017) Localization of 523 and 794 defects in diamond. Bull. Russ. acad. Sci. Phys., 81, 1099-1104 (translated from Izv. RAN. Ser. fiz., 81(9), 1220-1226). https://doi.org/10.3103/S1062873817090246
28. Taylor W.R., Jaques A.L., Ridd M. (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constraints on the source regions of pipe and alluvial diamonds. Amer. Miner., 75, 1290-1310.
29. Ustinov V.N. (2015) Terrigenous diamond-bearing rocks of the Siberian, East-European and African platforms. St.Petersburg, Nauka Publ., 531 p. (In Russ.)
30. Ustinov V.N., Neruchev S.S., Zagainy A.K., Antashuk M.G. et al. (2021) Diamonds in the North of the East-European platform. St.Peterburg, Nauka Publ., 410 p. (In Russ.)
31. Vasilev E., Kriulina G., Klepikov I. (2020) Luminescence of natural diamond in the NIR range. Phys. Chem. Miner., 47, 31.
32. Vasilev E.A., Klepikov I.V., Lukianova L.I. (2019) Comparison of Diamonds from the Rassolninskaya Depression and Modern Alluvial Placers of the Krasnovishersky District (Ural Region). Geol. Ore Depos., 61(7), 598-605 (translated from Zap. RMO, 147(1), 55-68). https://doi.org/10.1134/S1075701519070134
33. Vasilev E.A., Kriulina G.Yu., Garanin V.K. (2022) Thermal history of diamonds from kimberlitic pipes Arkhangelskaia and after A.P. Karpinsky-I. Proc. Mining university, 255, 327-336 (translated from Zap. Gorn. in-ta, 255, 327-336). https://doi.org/10.31897/PMI.2022.57
34. Vasilev E., Petrovsky V., Kozlov A., Antonov A., Kudryavtsev A., Orekhova K. (2019) The story of one diamond: the heterogeneous distribution of the optical centres within a diamond crystal from the Ichetju placer, northern Urals. Min. Mag., 83(4), 515-522. https://doi.org/10.1180/mgm.2019.32
35. Viatkin S.V., Kriulina G.Yu., Garanin V.K., Konogorova D.V., Vasilev E.A., Samosorov G.G. (2021) Morphology and defect-impurity composition of the Zapolyarnaya pipe diamonds. Vestn. Mosk. un-ta. Ser. 4: Geologiya, (1), 99-109. (In Russ.)
36. Woods G.S. (1986) Platelets and the infrared absorption of type Ia diamonds. Proc. Roy. Soc. l., 407, 219-238.
37. Yelisseyev A., Kanda H. (2007) Optical centers related to 3d transition metals in diamond. New Diam. Frontier Carbon Technol., 17(3), 127-178.
38. Yelisseyev A.P., Lawson S.C., Sildos I., Osvet A., Nadolinny V.A., Feigelson B.N., Baker J.M., Newton M.E., Yuryeva O.P. (2003) Effect of HPHT annealing on the photoluminescence of synthetic diamonds grown in the Fe–Ni–C system. Diam. Relat. Mater., 12, 2147-2168.
39. Zaitsev A.M. (2001) Optical Properties of Diamond: A Data Handbook. Berlin, Springer Verlag, 502 p.
40. Zedgenizov D.A., Malkovets V.G., Griffin W.L. (2017) Composition of diamond-forming media in cuboid diamonds from the V. Grib kimberlite pipe (Arkhangelsk province, Russia). Geochem. J., 51, 205-213.
41. Zedgenizov D.A., Harte B., Shatsky V.S., Politov A.A., Rylov G.M., Sobolev N.V. (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib. Mineral. Petrol., 151(1), 45-57. https://doi.org/10.1007/s00410-005-0044-5
42. Zinchouk N.N., Koptil V.I. (2003) Typomorphism of the Siberian platform diamonds. Moscow, Nedra Publ., 603 p. (In Russ.)
Review
For citations:
Vasilev E.A., Ustinov V.N., Leshukov S.I., Pendeliak R.N., Nikolaeva E.V. Diamonds from V. Grib kimberlite pipe: Morphology and spectroscopic features. LITHOSPHERE (Russia). 2023;23(4):549-563. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-4-549-563