Preview

LITHOSPHERE (Russia)

Advanced search

Raman Spectroscopy for Characterization of Peridotite Paragenesis Mineral Inclusions in Diamonds

https://doi.org/10.24930/1681-9004-2023-23-4-531-548

Abstract

Research subject. Spectroscopic features (Raman spectra) of mineral inclusions of peridotite paragenesis (olivine, orthopyroxene, clinopyroxene, garnet) in natural diamonds of the Yakutian diamondiferous province. Materials and methods. A series of diamonds was studied both with single mineral inclusions and with associations of inclusions of peridotite paragenesis. The chemical composition of mineral inclusions in diamonds was determined using an electron probe micro-analyzer (EPMA). The Raman spectra of inclusions were obtained on a spectrometer equipped with a Nd:YAG laser with a wavelength of 532 nm. Results. The revealed spectroscopic characteristics of mineral inclusions in natural diamonds reflect specific features of their chemical composition. Thus, the shift in the positions of the Raman peaks DB1 and DB2 in the olivine spectra reflects the forsterite - fayalite (Mg-Fe) isomorphism; changes in the positions of valence vibrational modes in the Raman spectra of clinopyroxene Si-Onbr16) and Si-Obr11) and orthopyroxene (ν17) reflect the isomorphism of diopside - jadeite (CaMg-NaAl) and enstatite - ferrosilite (Mg-Fe), position shifts of deformation (ν2) and valence (ν1, ν3) modes of vibrational energies of the Si-O bond in garnets reflect the Al-Cr and Ca-Mg isomorphism, respectively. Conclusions. For the identified correlations, regression lines were calculated, which can be used to determine the quantitative contents of the main chemical components of mineral inclusions (clinopyroxene and garnet) of peridotite paragenesis in situ in diamonds. The developed method for evaluating the chemical composition of garnet and clinopyroxene inclusions can be used to distinguish clinopyroxene and garnet inclusions from different mantle parageneses.

About the Authors

A. D. Kalugina
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS; V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Anastasiya D. Kalugina.

15 Academician Vonsovsky st., Ekaterinburg 620110; 3 Academician Koptyug av., Novosibirsk 630090



D. A. Zedgenizov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS; Ural State Mining University
Russian Federation

Dmitry A. Zedgenizov.

15 Academician Vonsovsky st., Ekaterinburg 620110; 30 Kuibyshev st., Ekaterinburg 620144



A. M. Logvinova
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Alla M. Logvinova.

3 Academician Koptyug av., Novosibirsk 630090



References

1. Bersani D., Ando S., Vignola P., Moltifiori G., Marino I.-G., Lottici P.P., Diella V. (2009) Micro-Raman spectroscopy as a routine tool for garnet analysis. spectrochim. Acta, 73(3), 484-491. https://doi.org/10.1016/j.saa.2008.11.033

2. Cameron M., Papike J.J. (1981) Structural and chemical variations in pyroxenes. Amer. Miner., 66(1-2), 1-50.

3. Chaplin T., Price G.D., Ross N.L. (1998) Computer simulation of the infrared and Raman activity of pyrope garnet, and assignment of calculated modes to specific atomic motions. Amer. Miner., 83(7-8), 841-847. https://doi.org/10.2138/am-1998-7-816

4. Chopelas A. (1991) Single crystal Raman spectra of forsterite, fayalite, and monticellite. Amer. Miner., 76(7-8), 1101-1109.

5. Chopelas A. (1999) Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. Amer. Miner., 84(3), 233-244. https://doi.org/10.2138/am-1999-0304

6. Compomenosi N., Mazzucchelli M.L., Mihailova B., Scambelluri M., Angel R.J., Nestola F., Reali A., Alvaro M. (2018) How geometry and anisotropy affect residual strain in host-inclusion systems: Coupling experimental and numerical approaches. Amer. Miner., 103(12), 2032-2035. https://doi.org/10.2138/am-2018-6700CCBY

7. Domeneghetti M.C., Molin G.M., Tazzoli V. (1985) Crystal-chemical implications of the Mg2+−Fe2+ distribution in orthopyroxenes. Amer. Miner., 70(9-10), 987-995.

8. Grutter H.S., Gurney J.J., Menzies A.H., Winter F. (2004) An updated classification scheme for mantle–derived garnet, for use by diamond explorers. Lithos, 77(1-4), 841-857. https://doi.org/10.1016/j.lithos.2004.04.012

9. Gubanov N., Zedgenizov D., Sharygin I., Ragozin A. (2019) Origin and evolution of high-Mg carbonatitic and low-Mg carbonatitic to silicic high-density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals, 9(1), 734. https://doi.org/10.3390/min9120734

10. Gudimova A.I., Agasheva E.V., Agashev A.M., Pokhilenko N.V. (2022) Composition, Structure, and Thermal Regime of the Lithospheric Mantle in the Area of the High-ly Diamondiferous V. Grib Kimberlite Pipe, Arkhangelsk Diamondiferous Province: Data on the Chemical Composition of Garnet and Chrome-Diopside Xenocrysts. Dokl. Earth Sci., 505(1), 439-445 (translated from Dokl. RAN, 505(1), 38-45). https://doi.org/10.1134/s1028334x2207008x

11. Guyot F., Boyer H., Madon M., Velde B., Poirier J.P. (1986) Comparison of the Raman microprobe spectra of (Mg, Fe)2SiO4 and Mg2GeO4 with olivine and spinel structures. Phys. Chem. Miner., 13(2), 91-95. https://doi.org/10.1007/BF00311898

12. Huang E., Chen C.H., Huang T., Lin E.H., Xu J.A. (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. Amer. Miner., 85(3-4), 473-479. https://doi.org/10.2138/am-2000-0408

13. Ishibashi H., Arakawa M., Yamamoto J., Kagi H. (2012) Precise determination of Mg/Fe ratios applicable to terrestrial olivine samples using Raman spectroscopy. J. Raman Spectroscopy, 43(2), 331-337. https://doi.org/10.1002/jrs.3024

14. Kalugina A.D., Zedgenizov D.A. (2021) Micro-Raman Spectroscopy Assessment of Chemical Compounds of Mantle Clinopyroxenes. Minerals, 10(12), 1084. https://doi.org/10.3390/min10121084

15. Kolesov B.A., Geiger C.A. (1998) Raman spectra of silicate garnets. Phys. Chem. Miner., 25(2), 142-151. https://doi.org/10.1007/s002690050097

16. Kolesov B.A., Geiger C.A. (1997) Raman scattering in silicate garnets: an investigation of their resonance intensities. J. Raman Spectroscopy, 28(9), 659-662. https://doi.org/10.1002/(SICI)1097-4555(199709)28:9<659::AID-JRS156>3.0.CO;2-7

17. Kuebler K.E., Jolliff B.L., Wang A., Haskin L.A. (2006) Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta, 70(24), 6201-6222. https://doi.org/10.1016/j.gca.2006.07.035

18. McKeown D.A., Bell M.I., Caracas R. (2010) Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2 SiO4). Amer. Miner., 95(7), 980-986. https://doi.org/10.2138/am.2010.3423

19. McMillan P. (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Amer. Miner., 69(7-8), 622-644.

20. McMillan P.F., Hofmeister A.M. (1988) Infrared and Raman spectroscopy. Rev. Mineral. Geochem., 18, 99-159. https://doi.org/10.1016/c2010-0-68479-3

21. Mernagh T.P., Hoatson D.M. (1997) Raman spectroscopic study of pyroxene structures from the Munni Munni layered intrusion, Western Australia. J. Raman Spectroscopy, 28(9), 647-658. https://doi.org/10.1002/(SICI)1097-4555(199709)28:9<647::AID-JRS155>3.0.CO;2-H

22. Mingsheng P., Dien M.L., Chao E.C.T. (1994) Raman spectroscopy of garnet-group minerals. Chinese J. Geochem., 13(2), 176-183. https://doi.org/10.1007/BF02838517

23. Moore R.K., White W.B., Long T.V. (1971) Vibrational spectra of the common silicates: I. The garnets. Amer. Miner., 56(1-2), 54-71.

24. Prencipe M., Maschio L., Kirtman B., Salustro S., Erba A., Dovesi R. (2014) Raman spectrum of NaAlSi2O6 jadeite. A quantum mechanical simulation. J. Raman Spectroscopy, 45(8), 703-709. https://doi.org/10.1002/jrs.4519

25. Rutstein M.S., White W.B. (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. Amer. Miner., 56(5-6), 877-887.

26. Schulze D.J. (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos, 71(2-4), 195-213. https://doi.org/10.1016/S0024-4937(03)00113-0

27. Shatsky V.S., Zedgenizov D.A., Ragozin L.A., Kalinina V.V. (2015) Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res., 28(1), 106-120. https://doi.org/10.1016/j.gr.2014.03.018

28. Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Walter M.J. (2013) Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem., 75(1), 355-421. https://doi.org/10.2138/rmg.2013.75.12

29. Smith D.C. (2015) The RAMANITA1© method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts. spectrochim. Acta, 61(10), 2299-2314. https://doi.org/10.1016/j.saa.2005.02.029

30. Sobolev N.V. (1974) Deep-seated inclusions in kimberlites and the problem of the upper matle composition. Moscow, Nauka Publ., 264 p. (In Russ.)

31. Sobolev N.V., Fursenko B.A., Goryainov S.V., Shu J., Hemley R.J., Mao H.K., Boyd F.R. (2000) Fossilized high pressure from the Earth's deep interior: The coesite-in-diamond barometer. Proc. National academy of Sciences of the USA, 97(22), 11875-11879. https://doi.org/10.1073/pnas.220408697

32. Sobolev N.V., Kharkiv A.D., Lavrentiev Yu.G., Pospelova L.N. (1973) Chromite-pyroxene-garnet intergrowths from the kimberlite pipe “Mir”. Geol. Geofiz., 12, 15-20. (In Russ.)

33. Sobolev N.V., Logvinova A.M., Zedgenizov D.A., Efimova E.S., Lavrent’ev Y.G., Usova L.V. (2000) Anomalously high content of Ni admixture in olivine inclusions from microdiamonds, the Yubileinaya kimberlite pipe, Yakutia. Dokl. AN, 375(3), 393-396. (In Russ.)

34. Stachel T., Harris J.W. (2008) The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol. Rev., 34(1-2), 5-32. https://doi.org/10.1016/j.oregeorev.2007.05.002

35. Wang A., Jolliff B.L., Haskin L.A., Kuebler K.E., Viskupic K.M. (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Amer. Miner., 86(7-8), 760-806. https://doi.org/10.2138/am-2001-0703

36. Zedgenizov D.A., Ragozin A.L., Kalinina V.V., Malkovets V.G., Pomazansky B.S. (2015) Mineral inclusions in diamonds from the Nyurbinskaya kimberlite pipe (Yakutia). Geology and mineral resources of the North-East of Russia: Proc. All-Russian sci.-pract. conf. Yakutsk, IGABM SO RAN, 173-176. (In Russ.)

37. Zedgenizov D.A., Ragozin A.L., Logvinova A.M., Yurimoto H., Sakamoto N., Kuroda M. (2017) Trace element chemistry of peridotitic garnets in Siberian diamonds. Magmatism of the Earth and related strategic metal deposits: Proc. XXXIV int. Conf. (Ed. by V.A. Zaitsev, V.N. Ermolaeva). Moscow, GEOKHI RAS, 319-321.


Review

For citations:


Kalugina A.D., Zedgenizov D.A., Logvinova A.M. Raman Spectroscopy for Characterization of Peridotite Paragenesis Mineral Inclusions in Diamonds. LITHOSPHERE (Russia). 2023;23(4):531-548. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-4-531-548

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)