Preview

LITHOSPHERE (Russia)

Advanced search

Peculiarities of Fe penetration into the matrix of CaCO3 ± olivine ± serpentine at a pressure of 4 GPa and temperature of 1400-1500°C (experimental data)

https://doi.org/10.24930/1681-9004-2023-23-4-491-499

Abstract

Research subject. We present the first results on modeling of the interaction of CaCO3 with metallic Fe in the presence of olivine and serpentine at high P-T parameters in comparison with the CaCO3-Fe system. The relevance of the study is related to the need to study decarbonatization reactions during subduction of crustal matter into the Earth's reduced mantle within the context of the global carbon cycle. Methods. The experiment was carried out using a BARS high-pressure apparatus at a pressure of 4.0 GPa and temperatures of 1400-1500°С with a subsequent study of the obtained samples on a scanning electron microscope equipped with a chemical microanalysis system. Results. CaCO3 was found to be unstable under the implemented conditions. The reaction products were iron carbide and Ca-wustite or Ca-magnesiowustite in the presence of silicate phases. Conclusions. The interaction of CaCO3 with metallic Fe at high pressure occurs even if the components are in the solid state. High reaction rates during interaction are provided by the appearance of liquid metal due to the relatively low melting temperature of the eutectic in Fe-C systems. The influence of gravity on the penetration of Fe into the carbonate matrix, which consists in the predominant infiltration of liquid metal between carbonate grains, was established. The presence of H2O significantly reduces the melting point of carbonate, which leads to an increase in the diffusion of components and decarbonization reaction rate, while the effect of gravity also takes place due to the difference in the density of liquid Fe in comparison with other components in a highly fluidized environment.

About the Authors

V. M. Sonin
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Valery M. Sonin.

3 Academician Koptyug av., Novosibirsk 630090



E. I. Zhimulev
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Egor I. Zhimulev.

3 Academician Koptyug av., Novosibirsk 630090



A. A. Chepurov
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Alexey A. Chepurov.

3 Academician Koptyug av., Novosibirsk 630090



A. I. Turkin
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Aleksandr I. Turkin.

3 Academician Koptyug av., Novosibirsk 630090



A. I. Chepurov
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Anatoly I. Chepurov.

3 Academician Koptyug av., Novosibirsk 630090



References

1. Artemov V.R., Kuznetsova V.N. (1976) Serpentine classifi-cation. Questions of methods of prospecting, exploration and industrial evaluation of chrysotile-asbestos deposits. Sverdlovsk, Ural. terr. geol. upr. Publ., 38-54. (In Russ.)

2. Chepurov A.I, Sonin V.M., Zhimulev E.I., Chepurov A.A., Tomilenko A.A. (2011) On the formation of element carbon during decomposition of CaCO3 at High P-T parameters under reducing conditions. Dokl. Earth Sci., 441(2), 1738-1741 (translated from Dokl. Akad. Nauk, 441(6), 806-809). https://doi.org/10.1134/S1028334X11120233

3. Chepurov A.I., Tomilenko A.A., Zhimulev E.I., Sonin V.M., Chepurov A.A., Surkov N.V., Kovyazin S.V. (2010) Problem of water in the upper mantle: Antigorite break-down. Dokl. Earth Sci., 434(1), 1275-1278 (translated from Dokl. akad. Nauk, 434(3), 391-394). https://doi.org/10.1134/S1028334X10090291

4. Chepurov A.I., Tomilenko А.А., Zhimulev E.I., Sonin У.М., Chepurov А.А., Kovyazin S.V., Timina T.Yu., Surkov N.V. (2012) The conservation of аn aqueous fluid in inclusions in minеrаls and their interstices at high рrеssurеs and temperatures during the decomposition of antigorite. Russ. Geol. Geophys., 53, 234-246 (translated from Geologiya i Geofizika, 53(3), 305-320).

5. Chepurov A., Zhimulev E., Chepurov A., Sonin V. (2021) Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons. Lithos, 404-405, 106437-10. https://doi.org/10.1016/j.lithos.2021.106437

6. Clift P.D. (2017) A revised budget for Cenozoic sedimentary carbon subduction. AGU Rev. Geophys., 55, 97-125. https://doi.org/10.1002/2016RG000531

7. Dobretsov N.L. (2010) Distinctive petrological, geochemical, and geodynamic features of subduction-related magmatism. Petrologiya, 18(1), 84-106. (In Russ).

8. Gromilov S., Chepurov A., Sonin V., Zhimulev E., Sukhikh A., Chepurov A., Shcheglov D. (2019) Formation of two crystal modifications of Fe7C3-x at 5.5 GPa. J. Appl. Cryst., 52, 1378-1384. https://doi.org/10.1107/S1600576719013347

9. Huang R., Sun W., Ding X., Zhao Y., Song M. (2020) Effect of pressure on the kinetics of peridotite serpentinization. Phys. Chem. Miner., 47, 33. https://doi.org/10.1007/s00269-020-01101-x

10. Irving A.J., Wyllie P.J. (1975) Subsolidus and melting relations for calcite, magnesite and join CaCO3-MgCO3 to 36 kb. Geochim. Cosmochim. Acta, 39(1), 35-53.

11. Kocherzhinsky Yu.A., Kulik O.G., Turkevich V.Z., Ivakhnenko S.A., Chipenko G.V., Cherepenina E.S., Krychkova A.P. (1992) Phase equilibria in the iron-carbon system at high pressures. Sverkhtverdye materialy, 6, 3-9. (In Russ.).

12. Koster van Groos A.F. (1982) High pressure differential analysis in the system CaO-CO2-H2O. Amer. Miner., 67, 234-237.

13. Li Z., Li J., Lange R., Liu J., Militzer B. (2017) Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with impli-cation for the deep carbon cycle. Earth Planet. Sci. lett., 457, 395-402. https://doi.org/10.1016/j.epsl.2016.10.027

14. Liu Y., Chen C., He D., Chen W. (2019) Deep carbon cycle in subduction zones. Sci. China. Earth Sci., 62, 1764-1782. https://doi.org/10.1007/s11430-018-9426-1

15. Martirosyan N.S., Litasov K.D., Shatskiy A., Ohtani E. (2015) Reactions of iron with calcium carbonate at 6 GPa and 1273-1873 K: Implications for carbonate reduction in the deep mantle. Russ. Geol. Geophys., 56, 1322-1331 (translated from Geologiya i Geofizika, 56(9), 1681-1692).

16. Martirosyan N.S., Litasov K.D., Shatskiy A., Ohtani E. (2015) The reactions between iron and magnesite at 6 GPa and 1273-1873 K: Implication to reduction of sub-ducted carbonate in the deep mantle. J. Miner. Petrol. sci., 110, 49-59. https://doi.org/10.2465/jmps.141003a

17. Martirosyan N.S., Yoshino T., Shatskiy A., Chanyshev A.D., Litasov K.D. (2016) The CaCO3-Fe interaction: Kinetic approach for carbonate subduction to the deep Earth's mantle. Phys. Earth Planet. inter., 259, 1-9. https://doi.org/10.1016/j.pepi.2016.08.008

18. Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T. (2019) Effect of water on magnesite-iron interaction, with implications for the fate of carbonates in the deep mantle. Lithos, 326-327, 435-445. https://doi.org/10.1016/j.lithos.2019.01.004

19. McCammon C., Bureau H., Cleaves H.J. II, Cottrell E., Dorfman S.M., Kellogg L.H., Li J., Mikhail S., Moussallam Y., Sanloup C., Thomson A.R., Vitale Brovarone A. (2020) Deep Earth carbon reactions through time and space. Amer. Miner., 105, 22-27. https://doi.org/10.2138/am-2020-6888CCBY

20. Palyanov Yu.N., Bataleva Yu.V., Sokol A.G., Borzdov Yu.N., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. (2013) Mantle-slab interaction and redox mechanism of diamond formation. PNaS, 110(51), 20408-13. https://doi.org/10.1073/pnas.1313340110

21. Poli S., Schmidt M.W. (1995) H2O transport and release in subduction zones - experimental constraints on basaltic and andesitic systems. J. Geophys. Res., 100, 22299-314.

22. Rohrbach A., Schmidt M.W. (2011) Redox freezing and melting in Earth's deep mantle resulting from carboniron redox coupling. Nature, 472, 209-214. https://doi.org/10.1038/nature09899

23. Stagno V., Frost D.J. (2010) Carbon speciation in the as-thenosphere: Experimental measurements of the redox conditions at carbonate-bearing melts coexist with graphite or diamonds in peridotite assemblages. Earth Planet. Sci. Lett., 300, 72-84. https://doi.org/10.1016/j.epsl.2010.09.038

24. Stagno V., Frost D.J., McCammon C.A., Mohseni H., Fei Y. (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib. Miner. Petrol., 169:16. https://doi.org/10.1007/s00410-015-1111-1

25. Suito K., Namba J., Horikawa T., Taniguchi Y., Sakura N., Kobayashi M., Onodera A., Shimomura O., Kikegawa T. (2001) Phase relations of CaCO3 at high pressure and temperature. Amer. Miner., 86(9), 997-1002.

26. Ulmer P., Trommsdorff V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. cience, 268 , 858-861.

27. Varlakov A.S. (1986) Petrology of serpentinization processes in giperbasic folded areas. Sverdlovsk, UNTs AN SSSR Publ., 224 p. (In Russ.)

28. Weidendorfer D., Manning C.E., Schmidt M.W. (2020) Carbonate melts in the hydrous upper mantle. Contrib. Miner. Petrol., 175, 72-17. https://doi.org/10.1007/s00410-020-01708-x

29. Whittaker E.J.W., Zussman J. (1956) The characterization of serpentine minerals X-ray diffraction. Miner. Mag., 31, 107-126.

30. Wicks F.J., Zussman J. (1975) Microbeam X-ray diffraction patterns of the serpentine minerals. Canad. Miner., 13, 244-258.

31. Wunder B., Schreyer W. (1997) Antigorite: high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213-227.

32. Wyllie P.J., Boettcher A.L. (1969) Liquidus phase relation-ships in the system CaO-CO2-H2O to 40 kilobars pressures with petrological applications. Amer. J. Sci., 267-A, 489-508.

33. Zhao S., Schettino E., Merlini M., Poli S. (2019) The stability and melting of aragonite: An experimental and ther-modynamic model for carbonated eclogites in the mant-le. Lithos, 324-325, 105-114. https://doi.org/10.1016/j.lithos.2018.11.005

34. Zhimulev E.I., Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A. (2018) Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0-5.5 GPa and 1600°C. High Pressure Res., 38, 153-164. https://doi.org/10.1080/08957959.2018.1458847

35. Zhimulev E.I., Sonin V.M.,Chepurov A.A., Chepurov A.I., Pokhilenko N.P. (2022) Details of interaction between CaCO3 and Fe at 4 GPa and 1400-1500°C. Doklady Earth Sci., 506(1), 630-634 (translated from Dokl. Akad. Nauk, 506(1), 38-42). https://doi.org/10.1134/S1028334X22600268


Review

For citations:


Sonin V.M., Zhimulev E.I., Chepurov A.A., Turkin A.I., Chepurov A.I. Peculiarities of Fe penetration into the matrix of CaCO3 ± olivine ± serpentine at a pressure of 4 GPa and temperature of 1400-1500°C (experimental data). LITHOSPHERE (Russia). 2023;23(4):491-499. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-4-491-499

Views: 399


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)