Preview

LITHOSPHERE (Russia)

Advanced search

Spectroscopic features of brown diamonds from Ural placers

https://doi.org/10.24930/1681-9004-2023-23-4-564-578

Abstract

Research subject. Brown diamond crystals from placers of the western slope of the Middle/Northern Urals. Aim. Study of the defect-impurity composition of a sample of brown diamonds from the placers of the western slope of the Middle/ Northern Urals. Methods. In this work, special attention is paid to the analysis of the characteristic spectroscopic features of defects in diamonds from the placers of the western slope of the Middle/Northern Urals using photoluminescence and IR spectroscopy. Results. The studied diamonds from placers of the Middle/Northern Urals are round isometric crystals of a dodecahedral (tetrahexahedral) habitus. According to the results of luminescence (PL) and infrared spectroscopy, three groups of crystals can be distinguished: (i) medium and high nitrogen crystals with low aggregation and dominant defects H3 and 490.7 nm in the PL spectra; (ii) medium and high nitrogen with high aggregation and the predominance of N3 defects in the PL spectra; (iii) low nitrogen with low aggregation and dominant S1 defects in the PL spectra. The first group is characterized by a green glow (excited 405 nm), the second and third groups are characterized by a blue and yellow glow, respectively. The blue glow of the studied crystals is primarily due to the presence of the N3V center. This defect appears as a result of the aggregation sequence of nitrogen impurities and corresponds to diamonds subjected to the highest temperature annealing (1100-1260°C). Diamonds containing the S1 center are characterized by a low content and aggregation of nitrogen compared to crystals of other groups. Group (i) diamond crystals, whose PL spectra are dominated by the H3 and 490.7 nm systems, have a more intense brown color. Conclusions. The data obtained indicate that annealing at higher temperatures is responsible for the formation of N3V centers in highly aggregated diamonds. The low %B1 aggregation and nitrogen content are associated with the presence of a nitrogen getter (presumably titanium) in the S1 center. An intense brown color appears in the group of diamonds with dominant systems A, H3 and 490.7 nm, which indicates a possible relationship between nitrogen and the corresponding optical absorption.

About the Authors

M. I. Rakhmanova
A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS
Russian Federation

Mariana I. Rakhmanova.

3 Lavrentyev av., Novosibirsk 630090



O. P. Yuryeva
A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS
Russian Federation

Olga P. Yuryeva.

3 Lavrentyev av., Novosibirsk 630090



D. A. Zedgenizov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS; Ural State Mining University
Russian Federation

Dmitriy A. Zedgenizov.

15 Academician Vonsovsky st., Ekaterinburg 620110; 30 Kuibyshev st., Ekaterinburg 620014



N. V. Gubanov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS; V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Nikolay V. Gubanov.

15 Academician Vonsovsky st., Ekaterinburg 620110; 3 Academician Koptyug av., Novosibirsk 630090



References

1. Bescrovanov V.V. (2000) Diamond ontogeny. Novosibirsk, Nauka Publ., 264 p. (In Russ.)

2. Bokiy G. B. (1986) Natural and synthetic diamonds (Eds G.B. Bokiy, G.N. Bezrukov, Yu.A. Klyuyev et al.). Moscow, Nauka Publ., 221 p. (In Russ.)

3. Byrne K.S., Anstie J.D., Chapman J.G., Luiten A.N. (2012) Optically reversible photochromism in natural pink diamond. Diam. Relat. Mater., 30, 31-36. https://doi.org/10.1016/j.diamond.2012.09.005

4. Cartigny P. (2005) Stable isotopes and the Origin of Diamond. Elements, 1(2), 79-84. https://doi.org/10.2113/gselements.1.2.79

5. Collins A.T., Connor A., Ly C.H., Shareef A., Spear P.M. (2005) High-temperature annealing of optical centers in type-I diamond. J. appl. Phys., 97, 083517. https://doi.org/10.1063/1.1866501

6. Deljanin B., Herzog F., Bieri W., Alessandri M., Gunther D., Frick D.A., Cleveland E., Zaitsev A.M., Peretti A. (2013) New generation of synthetic diamonds reaches the market Part B: identification of treated CVD-grown pink diamonds from Orion (PDC). Contrib. Gemol., 14, 21-40.

7. Dobrinets I., Vins V., Zaitsev A. (2013) HPHT-treated diamonds: diamonds forever. Springer series in materials science, 181, 257 p. https://doi.org/10.1007/978-3-642-37490-6

8. Eldridge C., Compston W., Williams I. (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353, 649-653. https://doi.org/10.1038/353649a0

9. Emerson E. (2009) Diamond: With hydrogen cloud and etch channels. Gems & Gemology, 45, 209-210.

10. Etmimi K.M., Goss J.P., Briddon P.R., Gsiea A.M. (2010) A density functional theory study of models for the N3 and OK1 EPR centres in diamond. J. Phys.: Condens. Matter., 22(38), 385502. https://doi.org/10.1088/0953-8984/22/38/385502

11. Fedortchouk Ya. (2019) A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Sci. Rev., 193, 45-65. https://doi.org/10.1016/j.earscirev.2019.02.013

12. Fritsch E. (1998) The nature of color in diamonds. The Nature of Diamonds. Cambridge: Cambridge University Press, 23-47.

13. Gaillou E., Post J., Bassim N., Zaitsev A.M., Rose T., Fries M., Stroud R.M., Steele A., Butler J.E. (2010) Spectroscopic and microscopic characterization of color lamellae in natural pink diamonds. Diam. Relat. Mater., 19, 1207-1220. https://doi.org/10.1016/j.diamond.2010.06.015

14. Gaillou E., Post J.E., Rose T., Butler J.E. (2012) Cathodoluminescence of Natural, Plastically Deformed Pink Diamonds. Microsc. Microanal., 18, 1292-1302. https://doi.org/10.1017/S1431927612013542

15. Green B.L., Collins A.T., Breeding C.M. (2022) Diamond Spectroscopy, Defect Centers, Color, and Treatments. Rev. Mineral. Geochem., 88(1), 637-688. https://doi.org/10.2138/rmg.2022.88.12

16. Goss J.P., Briddon P.R., Hill V., Jones R., Rayson M.J. (2014) Identification of the structure of the 3107 cm-1 H-related defect in diamond. J. Phys.: Condens. Matter., 26(14), 145801. https://doi.org/10.1088/0953-8984/26/14/145801

17. Hainschwang T. (2003) Classification and Color Origin of Brown Diamonds. Bachelor's Thesis. Nantes, Universite de Nantes, 91 p.

18. Hainschwang T., Notari F., Pamies G. (2020) A Defect Study and Classification of Brown Diamonds with Deformation-Related Color. Minerals, 10(10), 903. https://doi.org/10.3390/min10100903

19. Hainschwang T., Simic D., Fritsch E., Deljanin B., Woodring S., DelRe N. (2005) A Gemological Study of a Collection of Chameleon Diamonds. Gems & Gemology, 41(1), 20-34. https://doi.org/10.5741/gems.41.1.20

20. Harris J.W. (1992) Diamond geology. The properties of natural and synthetic diamond. London: Academic Press, 345-393.

21. Harris J.W., Hawthorne J.B., Oosterveld M.M. (1979) Regional and local variations in the characteristics of dia-monds from some southern African kimberlites. Proc. Second int. Kimberlite Conf., 1, 27-41. https://doi.org/10.29173/ikc967

22. Iakoubovskii K., Adriaenssens G.J. (1999) Photoluminescence in CVD Diamond Films. J. Phys. Stat. Sol. (a), 172(1), 123-129. https://doi.org/10.1002/(SICI)1521-396X(199903)172:13.3.CO;2-5

23. Iakoubovskii K., Adriaenssens G.J. (2001) Trapping of vacancies by defects in diamond. J. Phys.: Condens. Mat-ter., 13, 6015-6018. https://doi.org/10.1088/0953-8984/13/26/316

24. Jones R. (2009) Dislocations, vacancies and the brown colour of CVD and natural diamond. Diam. Relat. Mater., 18, 820-826. https://doi.org/10.1016/j.diamond.2008.11.027

25. Jones R., Hounsome L.S., Fujita N., Oberg S., Briddon P.R. (2007) Electrical and optical properties of multivacancy centres in diamond. Phys. Stat. Sol., 204(9), 3059-3064. https://doi.org/10.1002/pssa.200776311

26. Kiflawi I., Bruley J., Luiten W., van Tendeloo G. (1998) ‘Natural' and ‘man-made' platelets in type-la diamonds. Phil. Mag., B, 78, 299-314. https://doi.org/10.1080/13642819808205733

27. Laidlaw F.H.J., Diggle P.L., Breeze B.G., Dale M.W., Fisher D., Beanland R. (2021) Spatial distribution of defects in a plastically deformed natural brown diamond. Diam. Relat. Mater., 117, 108465. https://doi.org/10.1016/j.diamond.2021.108465

28. Massi L., Fritsch E., Collins A.T., Hainschwang T., Notari F. (2005) The “amber centers” find their relation to the brown colour in diamond. Diam. Relat. Mater., 14, 1623-1629. https://doi.org/10.1016/j.diamond.2005.05.003

29. Nadolinny V.A., Yelisseyev A.P. (1994) New Paramagnetic Centres Containing Nickel Ions in Diamond. Diam. Relat. Mater., 3, 17-21. https://doi.org/10.1016/0925-9635(94)90024-8

30. Nadolinny V.A., Yurjeva O.P., Pokhilenko N.P. (2009a) EPR and luminescence data on the nitrogen aggregation in diamonds from Snap Lake dyke system. Lithos, 112(2), 865-869. https://doi.org/10.1016/j.lithos.2009.05.045

31. Nadolinny V.A., Yuryeva O.P., Chepurov A.I., Shatsky V.S. (2009б) Titanium Ions in the Diamond. Structure: Model and Experimental Evidence. Appl. Magn. Res., 36, 109. https://doi.org/10.1007/s00723-009-0013-7

32. Nadolinny V., Yuryeva O.P., Rakhmanova M.I., Shatsky V.S., Kupriyanov I.N., Zedgenizov D.A. (2012) Distribution of OK1, N3 and NU1 defects in diamond crystals of different habits. Europ. J. Mineral., 24(4), 645-650. https://doi.org/10.1127/0935-1221/2012/0024-2173

33. Nadolinny V.A., Shatsky V.S., Yuryeva O.P., Rakhmanova M.I., Komarovskikh A.Yu., Kalinin A.A., Palyanov Yu.N. (2020) Formation features of N3V centers in diamonds from the Kholomolokh placer in the Northeast Siberian Craton. Phys. Chem. Minerals, 47, 4. https://doi.org/10.1007/s00269-019-01070-w

34. Nadolinny V.A., Yurjeva O.P., Rakhmanova M.I., Komarovskikh A.Yu., Shatsky V.S. (2023) Features of the defect-impurity composition of diamonds from the northern Istok and Mayat placers (Yakutia) according to EPR, IR, and luminescence data. Phys. Chem. Minerals, 50(1), 3. https://doi.org/10.1007/s00269-022-01227-0

35. Newton M.E., Baker J.M. (1989) 14N ENDOR of the OK1 centre in natural type Ib diamond. J. Phys.: Condens. Matter., 1, 10549-10560. https://doi.org/10.1088/0953-8984/1/51/024

36. Orlov Yu.L. (1984) The ontogeny of diamond. Moscow, Nauka Publ., 170 p. (In Russ.)

37. Phaal C. (1964) Plastic deformation of diamond. The Philosophical Magazine: a Journal of Theoretical Experimental and applied Physics, 10(107), 887-891. https://doi.org/10.1080/14786436408225392

38. Rakhmanova M.I., Komarovskikh A.Yu., Palyanov Y.N., Kalinin A.A., Yuryeva O.P., Nadolinny V.A. (2021) Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies. Crystals, 11, 366. https://doi.org/10.3390/cryst11040366

39. Rakhmanova M.I., Komarovskikh A.Yu., Ragozin A.L., Yuryeva O.P., Nadolinny V.A. (2022) Spectroscopic features of electron irradiated diamond crystals from Mir kimberlite pipe, Yakutia. Diam. Relat. Mater., 126, 109057. https://doi.org/10.1016/j.diamond.2022.109057

40. Reinitz I.E., Buerki P.R., Shigley J.E., McClure S.F., Moses T.M. (2000) Identification of heat-treated yellow to green diamond. Gems & Gemology, 36, 128-137. https://doi.org/10.5741/GEMS.36.2.128

41. Shcherbakova M.Ya., Sobolev E.V., Nadolinny V.A., Ak-senov V.K. (1975) Defects in plastically-deformed dia-monds, as indicated by optical and EPR spectra. Dokl. Akad. Nauk SSSR, 225, 566-568.

42. Shigley J.E., Chapman J., Ellison R.K. (2001) Discovery and mining of the Argyle diamond deposit, Australia. Gems & Ge mology, 37 (1), 26-41. https://doi.org/10.5741/GEMS.37.1.26

43. Shigley J.E., Fritsch E. (1993) A notable red-brown diamond. J. Gemm., 23, 259-266.

44. Skuzovatov S.Y., Zedgenizov D.A., Rakevich A.L., Shatsky V.S., Martynovich E.F. (2015) Multiple growth events in diamonds with cloudy microinclusions from the Mir kimberlite pipe: evidence from the systematics of optically active defects. Russ. Geol. Geophys., 56(1-2), 330-343. https://doi.org/10.1016/j.rgg.2015.01.024

45. Smith C.P., Bosshart G., Ponahlo J., Hammer V.M.F., Klapper H., Schmetzer K. (2000) GE POL diamonds: before and after. Gems & Gemology, 36(3), 192-215. https://doi.org/10.5741/GEMS.36.3.192

46. Speich L., Kohn S.C., Bulanova G.P., Smith C.B. (2018) The behaviour of platelets in natural diamonds and the development of a new mantle thermometer. Contrib. Mineral. Petrol., 173(5), 39. https://doi.org/10.1007/s00410-018-1463-4

47. Taylor W.R., Canil D., Milledge J. (1996) Kinetics of Ib to IaA Nitrogen Aggregation in Diamond. Geochim. Cosmochim. acta, 60, 4725-4733. https://doi.org/10.1016/S0016-7037(96)00302-X

48. Titkov S.V., Shigley J.E., Breeding C.M., Mineeva R.M., Zudin N.G., Sergeev A.M. (2008) Natural color purple diamonds from Siberia. Gems & Gemology, 44(1), 56-64. https://doi.org/10.5741/GEMS.44.1.56

49. Tretiakova L. (2009) Spectroscopic Methods for the Identification of Natural Yellow Gem-Quality Diamonds. Europ. J. Mineral., 21, 43-50. https://doi.org/10.1127/0935-1221/2009/0021-1885

50. Tretiakova L.I., Lyukhin A.M. (2016) Impact-cosmogenic-metasomatic generation of microdiamonds from Kumdy-Kol' deposit (Northern Kazakstan). Native Geol., (2), 69-77. (In Russ.)

51. Van Royen J., Pal'yanov Yu.N. (2002) High-pressure-high-temperature treatment of natural diamonds. J. Phys.: Condens. Matter., 14, 44. https://doi.org/10.1088/0953-8984/14/44/408

52. Wang W., Smith C.P., Hall M.S., Breeding C.M., Moses T.M. (2005) Treated-Color Pink-To-Red Diamonds from Lucent Diamonds Inc. Gems & Gemology, 41, 1. https://doi.org/10.5741/GEMS.41.1.6

53. Woods G.S. (1986) Platelets and the infrared absorption of type Ia diamonds. Proc. R. Soc. a, 407(1832), 219-238. https://doi.org/10.1098/rspa.1986.0094

54. Yang Z., Liang R., Zeng X., Peng M. (2012) A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes, ISRN Spectrosc. https://doi.org/10.5402/2012/871824

55. Yelisseyev A., Babich Y., Nadolinny V., Fisher D., Feigelson B. (2002) Spectroscopic study of HPHT synthetic diamonds as grown at 1500°C. Diam. Relat. Mater., 11, 22. https://doi.org/10.1016/S0925-9635(01)00526-X

56. Yuryeva O.P., Rakhmanova M.I., Nadolinny V.A., Zedgenizov D.A., Shatsky V.S., Kagi H., Komarovskikh A.Y. (2015) The characteristic photoluminescence and EPR features of superdeep diamonds (Sao-Luis, Brazil). Phys. Chem. Minerals, 42(9), 707-722. https://doi.org/10.1007/s00269-015-0756-7

57. Yuryeva O.P., Rakhmanova M.I., Zedgenizov D.A. (2017) Nature of type IaB diamonds from the Mir kimberlite pipe (Yakutia): evidence from spectroscopic observation. Phys. Chem. Minerals, 44(9), 655-667. https://doi.org/10.1007/s00269-017-0890-5

58. Yuryeva O.P., Rakhmanova M.I., Zedgenizov D.A., Kalinina V.V. (2020) Spectroscopic evidence of the origin of brown and pink diamonds family from Internatsionalnaya kimberlite pipe (Siberian craton). Phys. Chem. Minerals, 47(4), 20. https://doi.org/10.1007/s00269-020-01088-5

59. Zaitsev A.M. (2001) Optical properties of diamond: a data handbook. Berlin, Springer, 502 p. https://doi.org/10.1007/978-3-662-04548-0


Review

For citations:


Rakhmanova M.I., Yuryeva O.P., Zedgenizov D.A., Gubanov N.V. Spectroscopic features of brown diamonds from Ural placers. LITHOSPHERE (Russia). 2023;23(4):564-578. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-4-564-578

Views: 738


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)