Minerals of the apatite group from ultramafic lamprophyres of the Zima alkaline-ultramafic carbonate complex (Urik-Iya graben, Eastern Sayan region)
https://doi.org/10.24930/1681-9004-2023-23-4-589-602
Abstract
Research subject. This paper presents the results of a study of minerals of the apatite group from aillikites of the Zima alkaline-ultramafic carbonatite complex. Aim. To determine the composition of apatites to characterize the studied rocks and to elucidate the patterns of element distribution in the magma of aillikites in the late crystallization stages. Materials and Methods. Minerals of the apatite group from 6 samples (4 from dikes of the Bol'shetagninsky massif, 1 from the Bushkanai dike, 1 from the Beloziminskaya pipe) were studied. The samples showed similar textural-structural features, differing in the mineral composition of the groundmass. Results. Minerals of the apatite group are widespread in the groundmass of all the studied rocks. They are characterized by idiomorphic, subidiomorphic crystals of homogeneous composition, 10-100 microns in size. Minerals of the apatite group were identified as fluorapatite and hydroxyapatite characterized by a significant SiO2 content (up to 5 wt %), low SrO content (up to 1.5 wt %) and REE2O3 (up to 2 wt %). The studied apatites also include MgO, FeO, Na2O, SO4, and CO3. Fluorapatites from dyke aillikites are characterized by a higher silicon content as compared to apatites from the Beloziminskiy pipe. Apatites from fresh aillikites of the Bushkanai dyke have a relatively higher content of Sr, REE, and F than minerals from serpentinized samples. Conclusions. The composition of the studied apatites has a lower Sr and Ba content than orangeite and lamproite apatites. In terms of Sr, Si and REE contents, the studied apatites are similar to kimberlite and ailikite apatites. Such a difference allows minerals of the apatite group to be used as an indicator mineral for classification of kimberlites and related rocks, but only in combination with petrography and composition of other minerals of the groundmass.
Keywords
About the Authors
Ya. N. NugumanovaRussian Federation
Yazgul N. Nugumanova.
3 Academician Koptyug av., Novosibirsk 630090
A. D. Kalugina
Russian Federation
Anastasiya D. Kalugina.
3 Academician Koptyug av., Novosibirsk 630090; 15 Academician Vonsovsky st., Ekaterindurg 620110
A. E. Starikova
Russian Federation
Anastasia E. Starikova.
3 Academician Koptyug av., Novosibirsk 630090; 1 Pirogov st., Novosibirsk 630090
A. G. Doroshkevich
Russian Federation
Anna G. Doroshkevich.
3 Academician Koptyug av., Novosibirsk 630090; 6a Sakh'yanova st., Ulan-Ude 670047
I. R. Prokopyev
Russian Federation
Ilya R. Prokopyev.
3 Academician Koptyug av., Novosibirsk 630090
References
1. Awonusi A., Morris M.D., Tecklenburg M.M.J. (2007) Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcified Tissue Int., 81(1), 46-52.
2. Bagdasarov Yu.A. (2001) Metallogeny of Carbonatite Complexes of Russia. Metallogeny of Magmatic Complexes of Within-Plate Geodynamic Settings. Moscow, GEOS Publ., 128-506. (In Russ).
3. Chakhmouradian A.R., Reguir E.P., Mitchell R.H. (2002) Strontium-apatite: New occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. Can. Mineral., 40, 121-136.
4. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Coikslan C., Xue C., Kynicky J., Mumin H., Yang P. (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274-275, 188-213.
5. Comodi P., Liu Yu, Frezzotti M.L. (2001) Structural and vibrational behavior of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation. Phys. Chem. Minerals, 28, 225-231.
6. Dalton H.B., Giuliani A., O’Brien H., Phillips D., Hergt J. (2019) Petrogenesis of a hybrid cluster of evolved kimberlites and ultramafic lamprophyres in the Kuusamo area, Finland. J. Petrol., 60(10), 2025-2050. https://doi.org/10.1093/petrology/egz062
7. Doroshkevich A.G., Veksler I.V., Izbrodin I.A., Ripp G.S., Khromova E.A., Posokhov V.F., Travin A.V., Vladykin N.V. (2016) Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. J. Asian Earth Sci., 26, 81-96.
8. Egorov K.N., Kiselev A.I., Men'Shagin Y.V., Minaeva Y.A. (2010) Lamproite and Kimberlite of the Sayany Area: Composition, Sources, and Diamond Potential. Dokl. Earth Sci., 435(2), 1670-1675. https://doi.org/10.1134/S1028334X10120251
9. Foley S., Andronikov A., Melzer S. (2002) Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Miner. Petrol., 74, 361-384. https://doi.org/10.1007/s007100200011
10. Frolov A.A., Belov S.V. (1999) Complex carbonatite deposits of the Ziminsky ore region (Eastern Sayan, Russia). Geol. Ore Depos., 41(2), 109-130.
11. Frolov A.A., Lapin A.V., Tolstov A.V., Zinchuk N.N., Belov S.V., Burmistrov A.A. (2005) Carbonatites and kimberlites (relationships, minerageny, forecast). Moscow, NIA-Priroda Publ., 540 p. (In Russ)
12. Ishimaru Y., Oshima Y., Imai Y., Iimura T., Takanezawa S., Hino K., Miura H. (2018) Raman Spectroscopic Analysis to Detect Reduced Bone Quality after Sciatic Neurectomy in Mice. Molecules, 23(12), 3081.
13. Jones A.P., Wyllie P.J. (1984) Minor elements in perovskite from kimberlite& and the distribution of rare earth elements: An electron probe study. Earth Planet. Sci. Lett., 69, 128-140.
14. Jones R.H., McCubbin F.M., Guan Y. (2016) Phosphate minerals in the H group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia. Amer. Mineralogist, 101(11), 2452-2467.
15. Khan A.F., Awais M., Khan A.S., Tabassum S., Chaudhry A.A., Rehman I.U. (2013) Raman Spectroscopy of Natural Bone and Synthetic Apatites. Appl. Spectroscopy Rev., 48, 329-355.
16. Kjarsgaard B.A., Pearson D.G., Tappe S., Nowell G.M., Dowall D.P. (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos, 112, 236-248. https://doi.org/10.1016/j.lithos.2009.06.001
17. Kornakov V.V., Matveichuk A.A., Knutova S.V. (2019) State geological map of the Russian Federation, scale 1 : 200,000. Second edition. East Sayan series. Sheet N-47-XXIII (White Winter). Moscow, Rosnedra Publ., 132 p. (In Russ.)
18. Milligan R., Fedortchouk Y., Normandeau P.X., Fulop A., Robertson M. (2017) Features of apatite in kimberlites from Ekati Diamond Mine and Snap Lake, Northwest Territories, Canada: modelling of kimberlite composition. 11th international Kimberlite Conference Extended. Abstract. No. 11IKC-4519.
19. Mitchel R.H. (1997) Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite-portlandite. J. Afr. Earth Sci., 25, 147-158.
20. Mitchel R.H. (2008) Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. J. Volcanol. Geotherm. Res., 174, 1-8.
21. Mitchel R.H., Tappe S. (2008) Discussion of “Kimberlites and aillikites as probes of the continental lithospheric mantle”, by D. Francis and M. Patterson (Lithos, 109, 72-80). Lithos, 115(1), 288-292.
22. Mitchell R.H. (1986) Kimberlites: mineralogy, geochemistry, and petrology. New York, Springer Science & Business Media, 442 р.
23. Mitchell R.H. (1995) Kimberlites, Orangeites, and Related Rocks. New York, Springer Science & Business Media, 410 p.
24. Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D. (2018) Olivine in ultra-mafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites. Contrib. Mineral. Petrol., 173, 55. https://doi.org/10.1007/s00410-018-1480-3
25. Nugumanova Ya.N., Kalugina A.D. (2022) Features of the composition of minerals of the apatite group from ultramafic lamprophyres of the Bolshetagninsky alkaline-ultramafic carbonatite massif (East Sayan region). Proceedings of the Fersman Scientific Session of the Gi KSC RAS, (19), 266-270. (In Russ).
26. Pan Y., Fleet M.E. (2002) Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Control-ling Factors. Rev. Mineral. Geochem., 48(1), 13-49.
27. Pasero M., Kampf A.R., Ferraris C., Pekov I.V., Rakovan J., White T.J. (2010) Nomenclature of the apatite super-group minerals. Europ. J. Miner., 22, 163-179.
28. Piccol, P.M., Candela P.A. (2002) Apatite in igneous systems. in ‘‘Phosphates - geochemical, geobiological, and materials importance''. (Eds M.J. Kohn, J. Rakovan, J.M. Hughes). Rev. Mineral. Geochem., 48, 255-292.
29. Savelieva V.B., Danilova Yu.V., Bazarova E.P., Danilov B.S. (2020) Kimberlite-like rocks of the Urik-Iya graben, Eastern Sayan region: mineral composition, geo-chemistry and formation conditions. Geodynamics & Tectonophysics, 11(4), 678-696. (In Russ). https://doi.org/10.5800/GT-2020-11-4-0500
30. Savelyeva V.B., Danilova Yu.V., Letnikov F.A., Demonterova E.I., Yudin D.S., Bazarova E.P., Danilov B.S., Sharygin I.S. (2022) Age and Melt Sources of Ultramafic Dykes and Rocks of the Bolshetagninskii Alkaline Carbonatite Massif (Urik-Iya Graben, SW Margin of the Siberian Craton). Dokl. Earth Sci., 505, 452-458.
31. Sekerin A.P., Men'shagin Yu.V., Lashchenov V.A. (1995) The Sayan Province of High-Potassium Alkaline Rocks and Lamproites. Dokl. Earth Sci., 342(1), 82-86. (in Russ.)
32. Soltys A., Giuliani А., Phillips D. (2020) Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms. Contrib. Mineral. Petrol., 175(49). https://doi.org/10.1007/s00410-020-01686-0
33. Tappe S., Foley S., Jenner G., Heaman L., Kjarsgaard B., Romer R., Stracke A., Joyce N., Hoefs J. (2006) Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. J. Petrol., 47(7), 1261-1315.
34. Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B.A. (2005) Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. J. Petrol., 46(9), 1893-1900. https://doi.org/10.1093/petrology/egi039
35. Tappe S., Jenner G.A., Foley S.F., Heaman L., Besserer D., Kjarsgaard B.A., Ryan B. (2004) Torngat Ultramafic Lamprophyres and Their Relation to the North Atlantic Alkaline Province. Lithos, 76(1-4), 491-518. https://doi.org/10.1016/j.lithos.2004.03.040
36. Vasilenko A.A. (1996) Report on the results of exploration work at the Bolshetagninsky apatite-rare-metal deposit and the Yarma thorium-rare-metal ore occurrence for 1988-1992. Irkutsk branch of the Federal State Institution “TFI in the Irkutsk Region”. (In Russ, unpublished).
37. Webster J.D., Piccoli P.M. (2015) Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11, 177-182.
38. Wopenka B., Pasteris J.D. (2005) A mineralogical perspective on the apatite in bone. Materials Science and Engineering, C, 25, 131-143.
Review
For citations:
Nugumanova Ya.N., Kalugina A.D., Starikova A.E., Doroshkevich A.G., Prokopyev I.R. Minerals of the apatite group from ultramafic lamprophyres of the Zima alkaline-ultramafic carbonate complex (Urik-Iya graben, Eastern Sayan region). LITHOSPHERE (Russia). 2023;23(4):589-602. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-4-589-602