Trace and rare-earth elements in garnets from silicate-carbonate formations of the Kusa-Kopan complex (Southern Urals)
https://doi.org/10.24930/1681-9004-2023-23-2-225-246
Abstract
Research subject. Garnets from silicate-carbonate formations and their halos with skarn mineral associations, developed
in the historical mines and pits of the Southern Urals: Zelentsovskaya, Nikolaje-Maximilianovskaya, Akhmatovskaya,
Perovskitovaya, Gubensky massif, Praskovie-Evgenyevskaya and Shishimskaya.
Aim. To study the nature of silicate-carbonate formations of debatable origin.
Materials and methods. The composition of garnets distributed both in silicate-carbonate formations and in rocks with skarn mineral associations was analyzed using SEM-EDS (IPGG RAS) and SIMS (Yaroslavl branch of IPT RAS).
Results. The garnets from silicate-carbonate rocks show predominantly a dark to black color, a combination of simple rhombododecahedron and tetragontrioctahedron shapes. In terms of composition, these materials correspond to andradite – Ti-andradite, with the share of shorlmite and morimotoite end-members reaching 30 %. The garnets from calcareous skarns are reddish in color and have a rhombododecahedric habitus. In terms of composition, these garnets correspond to an andradite-grossular isomorphic series, with the share of shorlomite and morimotite end-members not exceeding 3 %. For these garnets, the content of trace and rare-earth elements was determined for the first time, and a posi tive correlation of Ti with U, Y, Zr, Hf and Nb was established. Figurative points on binary diagrams (in coordinate axes of rare-earth content) are plotted as a trend of garnet composition in the grossular–andradite–Ti-andradite series. Garnets from silicate-carbonate rocks, unlike those from skarn mineral associations, are characterized by an increased rare-earth elements content. The main feature of the rare-earth elements distribution spectra in garnets is a positive Eu-anomaly, which is observed in all studied garnets.
Conclusion. The data obtained allowed the authors to assume that garnets from silicate-carbonate formations and their halos were formed as a result of a single geological process, essentially close to skarn formation. The results of the petrographic-mineralogical and geochemical studies assume that the “carbonatite” nature of the silicate-carbo nate rocks of the Southern Urals is unlikely.
Keywords
About the Authors
V. S. StativkoRussian Federation
Vladislav S. Stativko
199106
21st line V. O.
199034
2 Makarova emb.
St. Petersburg
S. G. Skublov
Russian Federation
Sergey G. Skublov
199106
21st line V. O.
199034
2 Makarova emb.
St. Petersburg
V. V. Smolenskiy
Russian Federation
Vadim V. Smolenskiy
199106
21st line V. O.
St. Petersburg
A. B. Kuznetsov
Russian Federation
Anton B. Kuznetsov
199034
2 Makarova emb.
St.Petersburg
References
1. Abdel Gawad A. E., Ene A., Skublov S. G., Gavrilchik A. K., Ali M. A., Ghoneim M. M., Nastavkin A. V. (2022) Trace element geochemistry and genesis of beryl from Wadi Nugrus, South Eastern Desert, Egypt. Minerals, 12 (2), 206. doi: 10.3390/min12020206
2. Alekseev A. A., Alekseeva G. V., Kovalev S. G. (2000) Layered intrusions of the Western slope of the Urals. Ufa, Gilem Publ., 188 p. (In Russ.)
3. Aulov B. N., Vladimirtseva Yu. A., Gvozdik N. I., Korol’kova Z. G., Levin F. D., Lipaeva A. V., Potashova M. N., Samozvantsev V. A. (2015) State Geological Map of the Russian Federation. Scale 1 : 200,000. Second ed. Series South Ural. Sheet N-40-XII – Chrysostom. Explanatory note. Moscow, MF VSEGEI, 365 p. (In Russ.)
4. Belkovskii A. I., Loktina I. N., Nesterov A. R. (1998) Mineral mines of the Shishimsky-Nazyamsky mountains: precarbonatite skarns and early (barren) carbonatites. Problems of petrogenesis and ore formation. Tez. Report. Ekaterinburg, IGG UrO RAN, 12-14. (In Russ.)
5. Bocharnikova T. D., Kholodnov V. V., Shagalov E. S. (2011) Composition and sources of fluids in the skarns of the mineral mines of the Kusinsko-Kopansky intrusive complex (Southern Urals). Lithosphere (Russia), (5), 124-130. (In Russ.)
6. Duan X. X., Ju Y. F., Chen B., Wang Z. Q. (2020) Garnet geochemistry of reduced Skarn system: implications for fluid evolution and Skarn formation of the Zhuxiling W (Mo) deposit, China. Minerals, 10 (110), 1024. doi: 10.3390/min10111024
7. Fei X., Zhang Z., Cheng Z., Santosh M. (2019) Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China. Amer. Mineral.: J. Earth Planet. Mater., 104 (10), 1455-1468. doi: 10.2138/am-2019-6968
8. Gaspar M., Knaack C., Meinert L. D., Moretti R. (2008) REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim. Cosmochim. Acta, 72 (1), 185-205. doi: 10.1016/j.gca.2007.09.033
9. Gekimyants V. M. (2000) Mineralogy of titanium and zirconium in skarns, rodingites and rodingite-like formations of the Western Urals. Dis. ... cand. geol.-min. sci. Moscow, MGU, 21 p. (In Russ.)
10. Grew E .S., Locock A. J., Mills S. J., Galuskina I. O., Galuskin E. V., Halenius U. (2013) Nomenclature of the garnet supergroup. Amer. Mineral., (98), 785-811. doi: 10.2138/am.2013.4201
11. Gritsenko Yu. D. (2018) Titanium garnets of alkali-ultramafic massifs of the Maimeche-Kotui province. Geology, magmatism and metallogeny of the Central Asia. 2018: Sangilene Ore-Magmatic Systems (Alkaline Intrusions, Carbonatites), 25-32. (In Russ.)
12. Jiang X., Chen X., Zheng Y., Gao S., Zhang Z., Zhang Y., Zhang S. (2020) Decoding the oxygen fugacity of oreforming fluids from garnet chemistry, the Longgen skarn Pb-Zn deposit, Tibet. Ore Geol. Rev., 126, 103770. doi: 10.1016/j.oregeorev.2020.103770
13. Kholodnov V. V., Ronkin Yu. L., Fershtater G. B., Pribavkin S. V., Borodina N. S., Lepikhina O. P., Popova O. Yu. (2006) New Sm-Nd isotope data on the age of the Kusinsky gabbro massif (Southern Urals). Tr. IGG UrO RAN, vyp. 154, 331-334. (In Russ.)
14. Kholodnov V. V., Fershtater G. B., Ronkin Yu. L., Borodina N. S., Pribavkin S. V., Lepikhina O. P. (2010) Sm-Nd, Rb-Sr age of gabbroids, granitoids and titanomagnetite ores from layered intrusions of the Kusinsko-Kopan complex (South Urals). Dokl. Akad. Nauk, 432 (5), 650-654. (In Russ.)
15. Kostić B., Srećković-Batoćanin D., Filipov P., Tančić P., Sokol K. (2021) Anisotropic grossular-andradite garnets: Evidence of two stage skarn evolution from Rudnik, Central Serbia. Geol. Carpathica, 72 (1), 17-25. doi: 10.31577/GeolCarp.72.1.2
16. Kostov I. (1971) Mineralogy. Moscow, Mir Publ., 590 p. (In Russ.)
17. Kostyuk A. V., Gorbachev N. S., Nekrasov A. N. (2021) Petrogenesis of garnet-bearing carbonatite, Tromso region, Norway. Geochem. Int., 59, 801-812 (translated from Geokhimiya, 66 (8), 756-768). doi: 10.1134/S0016702921080036
18. Krasnobaev A. A., Fershtater G. B., Bea F., Montero P. (2006) Zircon age of gabbro and granitoids of the Kusa-Kopan complex (Southern Urals). Tr. IGG UrO RAN, vyp. 154, 300-303. (In Russ.)
19. Krasnobaev A. A., Puchkov V. N., Kozlov V. I., Sergeeva N. D., Busharina S. V., Lepekhina E. N. (2013) Zirconology of the Navysh volcanic rocks of the Ai Formation and the problem of the age of the lower Riphean boundary in the Southern Urals. Dokl. Akad. Nauk, 448 (4), 437-442. (In Russ.) doi: 10.7868/S086956521304021X
20. Kutyrev A. V., Matveeva P. A., Stepanov S. Yu. (2014) Features of the morphology and composition of zinc spinels from various deposits of the world. Metallogeniya Drevnikh i Sovremennykh Okeanov, (1), 212-215. (In Russ.)
21. Kuznetsov A. B., Krupenin M. T., Gorokhov I. M., Maslov A. V., Konstantinova G. V., Kutyavin E. P. (2007) Sr isotopic composition in the Lower Riphean carbonate rocks of the magnesite-bearing Satka Formation, Sou thern Urals. Dokl. Akad. Nauk, 414 (2), 233-238. (In Russ.)
22. Kuznetsov A. B., Ovchinnikova G. V., Gorokhov I. M., Kaurova O. K., Krupenin M. T., Maslov A. V. (2003) Sr-isotope characteristics and Pb-Pb age of limestones of the Bakal Formation (type section of the Lower Riphean, Southern Urals). Dokl. Akad. Nauk, 391 (6), 794-798. (In Russ.)
23. Kuznetsov A. B., Ovchinnikova G. V., Semikhatov M. A., Gorokhov I. M., Kaurova O. K., Krupenin M. T., Vasil’eva I. M., Gorokhovskii B. M., Maslov A. V. (2008) Sr isotopic characterization and Pb-Pb age of carbonate rocks of the Satka Formation, Lower Riphean Burzyanskaya Group of the Southern Urals. Stratigr. Geol. Korrel., 16 (2), 16-34. (In Russ.)
24. Levashova E. V., Skublov S. G., Oitseva T. A., Dyachkov B. A., Li X. H., Li Q. L., Shatova N. V., Shatov V. V. (2022) First Age and Geochemical Data on Zircon from Riebeckite Granites of the Verkhnee Espe Rare Earth-Rare Metal Deposit, East Kazakhstan. Geochem. Int., 60, 1-15 (translated from Geokhimiya, 67 (1), 3-18). doi: 10.1134/S0016702922010086
25. Li Y., Yuan F., Jowitt S. M. et al. (2021) Garnet major and trace element evidence of the alteration and mineralizing processes associated with genesis of the Qiaomaishan skarn deposit, Xuancheng ore district, eastern China. Ore Geol. Rev., 137, 104304. doi: 10.1016/j.oregeorev.2021.104304
26. Locock A. J. (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci., 34, 1769-1780. doi: 10.1016/j.cageo.2007.12.013
27. McDonough W. F., Sun S. S. (1995) The composition of the Earth. Chem.Geol., 120 ( 3-4), 223-253.
28. Myasnikov V. S. (1954) Mineral mines of the Shishim and Nazyam mountains. Mineralogy of the Urals. Moscow; Leningrad, AN SSSR. Т. 1, 250-268. (In Russ.)
29. Myasnikov V. S. (1940). On the titanium vesuvian from the Perovskitovaya and Akhmatova mines in the South Urals. Report. Dokl. Akad. Nauk SSSR, 28 (5), 445-448. (In Russ.)
30. Ovchinnikova G. V., Kuznetsov A. B., Krupenin M. T., Gorokhov I. M., Kaurova O. K., Maslov A. V., Gorohovsky B. M. (2014) U-Pb systematics of Proterozoic magnesites of the Satka deposit in the Southern Urals: fluid source and age. Dokl. Akad. Nauk, 456 (2), 219-222. (In Russ.) doi: 10.7868/S0869565214140229
31. Ovchinnikova G. V., Kuznetsov A. B., Krupenin M. T., Vasilyeva I. M., Kaurova O. K. (2018) Pb-Pb age of Riphean magnesites of the Bakal ore field. Dokl. Akad. Nauk, 481 (5), 529-533. (In Russ.) doi: 10.31857/S086956520002125-0
32. Ovchinnikova G. V., Kuznetsov A. B., Vasil’eva I. M., Gorokhov I. M., Krupenin M. T., Turchenko T. L. (2008) Pb-Pb age of transformation of sedimentary phosphorites in the Lower Riphean carbonate deposits, Satka Formation South Urals. Stratigr. Geol. Korrel., 16 (2), 35-40. (In Russ.)
33. Popov V. A. (2010) Mineralogical studies of skarns and carbonatites of the Akhmatova mine. Ural Mineralogical Collection, (17), 109-117. (In Russ.)
34. Popov V. A. (2001) Monticellite crystals from the Shishim mine in the Southern Urals. Ural’skii Geol. Zhurnal, (5), 140-143. (In Russ.)
35. Popov V.A. (2012). To the mineralogy of the Praskovye-Evgenevskaya mine in the Southern Urals. Ural Mineralogical School – 2012. Ekaterinburg, IGG UrO RAN, 134-139. (In Russ.)
36. Rumyantseva N. A., Skublov S. G., Vanshtein B. G., Li X.-H., Li Q.-L. (2022) Zircon from gabbroids of the Shaka Ridge (South Atlantic): U-Pb age, oxygen isotope ratio and trace element composition. Zapiski Ross. Mineralog. Obshchestva, 151 (1), 49-73. (In Russ.) URL: https://zrmo.org/ru/archives/2022/vyipusk-1/czirkon-iz-gabbroidov-xrebta-shaka-(yuzhnaya-atlantika)-u-pb-vozrast-sootnoshenie-izotopov-kisloroda-i-redkoelementnyij-sostav.html
37. Sal’nikova E. B., Stifeeva M. V., Nikiforov A. V., Yarmolyuk V. V., Kotov A. B., Anisimova I. V., Sugorakova A. M., Vrublevskii V. V. (2018) Garnets of the andradite-morimotoite series – potential minerals-geochronometers for U-Pb dating of ultramafic alkaline rocks. Dokl. Akad. Nauk, 480 (5), 583-586. (In Russ.) doi: 10.7868/S0869565218050171
38. Samal A. K., Srivastava R. K., Upadhyay D. (2021) Major, Trace, and Rare-Earth Element Geochemistry of Nb-V Rich Andradite-Schorlomite-Morimotoite Garnet from Ambadungar-Saidivasan Alkaline Carbonatite Complex, India: Implication for the Role of Hydrothermal Fluid-Induced Metasomatism. Minerals, 11 (7), 756. doi: 10.3390/min11070756
39. Savard J. J., Mitchell R. H. (2021) Petrology of ijolite series rocks from the Prairie Lake (Canada) and Fen (Norway) alkaline rock-carbonatite complexes. Lithos, 396, 106188. doi: 10.1016/j.lithos.2021.106188
40. Semikhatov M. A., Kuznetsov A. B., Maslov A. V., Gorokhov I. M., Ovchinnikova G. V. (2009) Stratotype of the Lower Riphean – Burzyanskaya Group of the Sou thern Urals: lithostratigraphy, paleontology, geochronology, Sr- and C-isotope characteristics of carbonate rocks. Stratigr. Geol. Korrel., 17 (6), 17-45. (In Russ.)
41. Shilin L. L. (1951) On the garnets of the Shishim mountains. Tr. Mineralog. Muzeya, (3), 146-1951. (In Russ.)
42. Skublov S. G., Gavril’chik A. K., Berezin A. V. (2022) Geochemistry of Beryl Species: Comparative Analysis and Visualization of Analytical Data by Principal Component Analysis (PCA) and Stochastic Neighbor Embe dding with t-Distribution (t-SNE). Zapiski Gornogo Instituta, (255), 455-469. (In Russ.) doi: 10.31897/PMI.2022.40
43. Skublov S. G., Rumyantseva N. A., Li Q., Vanshtein B. G., Rezvukhin D. I., Li X. (2022) Zircon xenocrysts from the Shaka Ridge record ancient continental crust: New U-Pb geochronological and oxygen isotopic data. J. Earth Sci., 33 (1), 5-16.
44. Stativko V. S. (2022) Features of the distribution of rare and rare earth elements in garnets from silicate-carbonate rocks of the Kusinsko-Kopansky complex (southern Urals). Metallogeny of ancient and modern oceans, 28, 193-197. (In Russ.)
45. Stativko V. S., Stepanov S. Yu., Shagalov E. S. (2019) Chemical composition and nature of garnet mineralization in veined silicate-carbonate rocks spatially associated with the Kusinsky-Kopan gabbro intrusive, South Urals. New in the knowledge of ore formation processes. The Ninth Russian Youth Scientific and Practical School with International Participation, 397-401. (In Russ.)
46. Stavrev M., Peytcheva I., Hikov A., Vassileva R., von Quadt A., Guillong M., Grozdev R., Plotkina Y. (2020) Late Cretaceous magmatism in part of the Western Rhodopes (Bulgaria): U-Pb dating on zircon and grossular-andradite garnets. Comptes rendus de l’Académie bulgare des Sciences, 73, 522-530. doi: 10.7546/CRABS.2020.04.11
47. Stepanov S. Yu., Puchkov V. N., Palamarchuk R. S., Popov V. A., Lepekhina E. N., Sharpenok L. N., Antonov A. V. (2020) The first evidence of Paleozoic endogenous activity on the western slope of the Southern Urals. Dokl. Akad. Nauk, 493 (1), 21-26. (In Russ.) doi: 10.31857/S2686739720070208
48. Stepanov S. Yu., Sharpenok L. N., Palamarchuk R. S., Glazov A. I. (2017) Features of the distribution of microimpurities in perovskite from skarns and vein calcite formations of the Chernorechensky and Nazyamsky ridges (Southern Urals). Mineralogiya, 3 (1), 61-70. (In Russ.)
49. Stifeeva M. V., Sal’nikova E. B., Arzamastsev A. A., Kotov A. B., Grozdev V. Yu. (2020) Calcium garnets as a source of information on the age of alkaline-ultrabasic intrusions in the Kola igneous province. Petrologiya, 28 (1), 72-84. (In Russ.) doi: 10.31857/S0869590320010069
50. Tian Z. D., Leng C. B., Zhang X. C., Zafar T., Zhang L. J., Hong W., Lai C. K. (2019) Chemical composition, gene sis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China. Ore Geol. Rev., 112, 103016. doi: 10.1016/j.oregeorev.2019.103016
51. Yang Y. H., Wu F. Y., Yang J. H., Mitchell R. H., Zhao Z. F., Xie L. W., Huang C., Ma Q., Yang M., Zhao H. (2018) U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. J. Analyt. Atom. Spectrom., 33 (2), 231-239. doi: 10.1039/C7JA00315C
52. Zakharov Y. D., Kuznetsov A. B., Gavrilova A. A., Stativko V. S. (2022) A new 87Sr/86Sr record of Cretaceous marine invertebrates from the palaeo-Pacific and its implication for stratigraphical and palaeoenvironmental reconstructions. Cretac. Res., 139, 105298. (In Russ.) doi: 10.1016/j.cretres.2022.105298
Review
For citations:
Stativko V.S., Skublov S.G., Smolenskiy V.V., Kuznetsov A.B. Trace and rare-earth elements in garnets from silicate-carbonate formations of the Kusa-Kopan complex (Southern Urals). LITHOSPHERE (Russia). 2023;23(2):225-246. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-2-225-246