Preview

LITHOSPHERE (Russia)

Advanced search

Crystal chemistry of globular layered silicates of the Troitsko-Bainovskoye fre-clay deposit (Middle Urals)

https://doi.org/10.24930/1681-9004-2023-23-1-133-146

Abstract

Research subject. The composition and crystal chemistry of glauconite from the open deposits (K2cn-cp) of the Poldnevskaya area of the Troitsko-Bainovskoye deposit of fire clays.

Materials and methods. An analysis of the mineralogical and crystallochemical properties of glauconite was carried out using a set of modern analytical methods (“Geonauka” Centre for Collective Use, IG FRC Komi SC UB RAS): X-ray diffractometry, IR-spectroscopy, scanning electron microscopy, modeling of diffraction profiles.

Results and conclusions. The crystal-chemical features of glauconite were determined. Two main glauconite varieties (green and light green) in the rocks of the Zaikovskaya suite were distinguished and their differences and degree of maturity have been established. It was found that dark green globules are close to glauconite and represent a more “mature” variety, while the light green ones are a disordered mixed-layer mineral of the mica (glauconite) – smectite series and are a product of incomplete replacement of the original smectite by glauconite. Phase heterogeneity of glauconite globules was revealed. It has been established that the rocks of the Troitsko-Bainovskoe deposit are exposed to intensive transformation under the influence of acidic surface and technogenic waters, which result in the destruction of the initial minerals and the appearance of secondary mineralization. Clay minerals of the glauconite-bearing rocks are represented by disordered mixed-layer phases of predominantly illite/smectite type.

About the Author

Yu. S. Simakova
Institute of Geology FRC Komi SC UB RAS
Russian Federation

  54 Pervomaiskaya st., Syktyvkar 167982 



References

1. Afanasʼeva N.I., Zorina S.O., Gubaidullina A.M., Naumkina N.I., Suchkova G.G. (2013) Crystal chemistry and genesis of glauconite from the Melovatka section (Cenomanian, southeast of the Russian Plate). Lithosphere (russia), (2), 65-75. (In Russ.)

2. Amorosi A. (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J. Sediment. res., B65(4), 419-425.

3. Amorosi A., Sammartino I., Tateo F. (2007) Evolution patterns of glaucony maturity: A mineralogical and geochemical approach Deep-Sea research. Pt II. Topical Studies in Oceanography, 54(11), 1364-1374.

4. Banerjee S., Chattoraj S.L., Saraswati P.K., Dasgupta S., Sarkar U., Bumby A. (2012) The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India. Geol. J., 47, 357-371. https://doi.org/10.1002/gj.1345

5. Besson G., Drits V.A. (1997) Refned relationships between chemical composition of dioctahedral fne-dispersed mica minerals and their infrared spectra in the OH stretching region. Pt I. Identifcation of the stretching bands. Clays Clay Miner., 45, 158-169.

6. Burasov L.G., Dvoryanov V.M., Kazancev N.K. (1983) Report on detailed exploration of 4–5 sections of the Poldnevskaya deposit of the Troitsko-Bainovsky deposit of fre clays carried out in 1973–1983 with a calculation of reserves as of January 1, 1983. V. 1. TFGI Ural FR. (In Russ.)

7. Drits V.A., Kameneva M.Y., Saharov B.A., Arhipenko D.K. (1993) Problems of determining the real structure of glauconites and related fne-grained phyllosilicates. Novosibirsk, Nauka Publ., 200 p. (In Russ.)

8. Drits V.A., Kossovskaya A.G. (1991) Clay minerals. Micas, chlorites. Tr. GIN rAS, vyp. 465. Moscow, Nauka Publ., 176 p. (In Russ.)

9. Drits V.A., Ivanovskaya T.A., Sakharov B.A., Zvyagina B.B., Derkovski A., Gor’kova N.V., Pokrovskaya E.V., Savichev A.T., Zaitseva T.S. (2010) Nature of the Structural and Crystal Chemical Heterogeneity of the Mg Rich Glauconite (Riphean, Anabar Uplift). Lithol. Miner. resour., 45(6), 555-576 (translated from Litol. Polezn. Iskop., (6), 620-643). https://doi.org/10.1134/S0024490210060040

10. Guggenheim S., Adams J.M., Bain D.C., Bergaya F., Brigatti M.F., Drits V.A., Formoso M.L.L., Gala N.E., Kogure T., Stanjek H. (2006) Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner., 54, 761-772.

11. Ivanovskaya T.A., Zvyagina B.B., Sakharov B.A., Pokrovskaya E.V., Zaitseva T.S., Dorzhieva O.V. (2015) Globular layer silicates of the glauconite–illite composition in upper proterozoic and lower cambrian rocks. Lithol. Miner. resour., 50(6), 452-477 (translated from Litol. Polezn. Iskop., (6), 510-537). https://doi.org/10.1134/S002449021506005X

12. Ivanovskaya T.A., Zvyagina B.B., Sakharov B.A., Pokrovskaya E.V., Zaitseva T.S., Konstantinova G.V., Kochnev B.B., Dorzhieva O.V. (2021) Mineralogical, crystal-chemical, and Rb–Sr isotope data on terrigenous globular phyllosilicates of the Maastakh formation (lower vendian, Olenek uplift). Lithol. Miner. resour. 56(5), 418-437 (translated from Litol. Polezn. Iskop., (5), 436-457). https://doi.org/ 10.1134/S0024490221050035

13. Kodama H. (1985) Infrared spectra of minerals; reference guide to identifcation and characterization of minerals for the study of soils. res. Branch Agriculture Canada, Tech. Bull., 140-150.

14. Laboratory workshop on soil science. (2019) [Electronic edition of network distribution]. (Eds V.A. Korolev, V.N. Shirokov, V.V. Shanina). Moscow, KDU, Dobrosvet, 240 p. (In Russ.) URL: https://bookonlime.ru/node/4701

15. López-Quirós A., Sánchez-Navas A., Nieto F., Escutia C. (2020) New insights into the nature of glauconite. Amer. Miner., 105, 674-686.

16. Meunier A., El Albani A. (2007) The glauconite–Fe-illite–Fe-smectite problem: a critical review. Terra Nova, 19, 95-104.

17. Odin G.S., Fullagar P.D. (1988) Geological signifcance of the glaucony facies. Green Marine Clays, 45, 295-332.

18. Odin G.S., Matter A. (1981) De glauconiarum origine. sedimentology, 28, 611-641.

19. Olferʼev A.G., Alekseev A.S. (2005) Stratigraphic scheme of the Upper Cretaceous deposits of the East European Platform. Explanatory note. Moscow, PIN RAN, 203 p. (In Russ.)

20. Rieder M., Cavazzini G., D’yakonov Y.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Koval’ P.V., Müller G., Neiva A.M.R., Radoslovich E.W., Robert J.-L., Sassi F.P., Takeda H., Weiss Z., Wones D.R. (1998) Nomenclature of the micas. Mineral. Mag., 63(2), 267-279. https://doi.org/10.1180/minmag.1999.063.2.13

21. Rudmin M., Banerjee S., Mazurov A. (2017) Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia. Sediment. Geol., 355, 20-30. https://doi. org/10.1016/j.sedgeo.2017.04.006

22. Rybnikova L.S., Rybnikov P.A. (2015) Features of the formation of reserves of groundwater deposits operated by drainage systems in the mountainous and folded Urals. Geoekologiya. Inzhenernaya Geologiya. Gidrogeologiya. Geokriologiya, (3), 204-219. (In Russ.)

23. Simakova Yu.S., Lyutoev V.P., Lysyuk A.Yu. (2019) Crystal chemical features of glauconite Karinsky deposit (South Urals). Vestn. IG Komi NTs urO rAN, 291(3), 41-50. (In Russ.) https://doi.org/10.19110/2221-1381-2019-3-41-50

24. Slonimskaya M.V., Besson G., Dainyak L.G., Tchoubar C., Drits V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner., 21, 377-388.

25. Whitton J.S., Churchman G.J. (1987) Standard methods for mineral analysis of soil survey samples for characterisation and classifcation in NZ Soil Bureau. NZ Soil Bureau Sci. rep. 79. 27 p.

26. Zaitseva T.S., Ivanovskaya T.A., Sakharov B.A., Zviagina B.B., Dorzhieva O.V. (2020) Structural and crystalchemical features and rb–sr age of globular glauconite in the Ust-Il’ya formation (lower riphean, Anabar uplift). Lithol. Miner. resour., 55(6), 468-485 (translated from Litol. Polezn. Iskop., (6), 549-568). https://doi.org/10.1134/S0024490220060103


Review

For citations:


Simakova Yu.S. Crystal chemistry of globular layered silicates of the Troitsko-Bainovskoye fre-clay deposit (Middle Urals). LITHOSPHERE (Russia). 2023;23(1):133-146. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-1-133-146

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)