Preview

LITHOSPHERE (Russia)

Advanced search

Formation conditions of quartz deposits in the Southern Urals: Fluid inclusion data and IR spectroscopy

https://doi.org/10.24930/1681-9004-2022-22-6-859-871

Abstract

Research subject. Quartz veins of the Svetlorechenskoye, Karayan, Gora Khrustalnaya and Tolstikha quartz deposits in the Southern Urals.

Methods. An optical study of quartz was performed using an Olympus BX51 optical microscope. A fluid inclusion study was performed using a thermostage TMS-600 (Linkam) equipped with the LinkSys V-2.39 software and an Olympus BX51 optical microscope (South Urals State University, Miass). The fluid composition in the inclusions was estimated from eutectic temperatures. Fluid salinity was calculated based on the melting temperatures of crystalline pha ses. Registration of infrared spectra was carried out using an infrared Fourier spectrometer Nicolet-6700 Thermo Scientific (SU FRC MG UB RAS, Miass). The spectra were processed using the OMNIC Thermo Nicolet software package and the Peakfit program. The extinction coefficients for calculating the concentration of molecular water and OH-groups were used from.

Results. The veins are composed of coarse-grained milky-white quartz. The fluid inclusion data shows that the quartz veins were deposited from similar in composition NaCl-H2O fluids with salinities of 3–9 wt % NaCl eq. and at temperatures ranging from 100 to 280°C. Quartz in the Tolstikha deposit was deposited at the highest temperatures. According to IR spectroscopy data, quartz in the studied deposits is characterized by high contents of molecular water and average concentrations of Al-OH groups. According to the content of OH-groups, quartz in the Tolstikha deposit approaches industrial granulated quartz used in the production of high-purity quartz concentrates.

Conclusions. Quartz veins in the studied deposits formed at temperatures ranging from 100 to 280°C. The salinity of inclusions in quartz ranged from 10 to 3.5 wt % NaCl eq. Mineral-forming fluids were of Na-chloride or Na-K-chloride composition, which indicates quartz crystallization during the post-diagenetic (metamorphic) transformation of rocks. Quartz in the studied deposits is characterized by a specific ratio of water and Al-OH, which is associated with the conditions of deposit formation and incompleteness of quartz metamorphism processes therein.

About the Authors

N. N. Ankusheva
Institute of Mineralogy SU FRC MG UB RAS
Russian Federation

Chelyabinsk region, Miass 456317



M. V. Shtenberg
Institute of Mineralogy SU FRC MG UB RAS
Russian Federation

Chelyabinsk region, Miass 456317



M. A. Korekina
Institute of Mineralogy SU FRC MG UB RAS
Russian Federation

Chelyabinsk region, Miass 456317



References

1. Anfilogov V.N., Kabanova L.Ya., Igumentseva M.A., Nasyrov R.Sh., Shtenberg M.V., Lebedev A.S., Ryzhkov V.M., Ardyshev P.A. (2012) Geological structure, petrography and technological characteristics of quartz from the Zhila Tolstikha deposit. Razvedka i Okhrana Nedr, (12), 12-17. (In Russ.)

2. Anfilogov V.N., Kabanova L.Ya., Igumentseva M.A., Nikandrova N.K. (2017) Geological structure, petrography and genesis of the quartz deposit Gora Khrustalnaya (Middle Urals). Otech. Geol., (1), 68-74. (In Russ.)

3. Bachheimer J.P. (2000) Comparative NIR and IR examination of natural, synthetic, and irradiated synthetic quartz. Europ. J. Mineral., 12(5), 975-986.

4. Bodnar R.J., Vityk M.O. (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. Fluid inclusions in minerals: methods and applications. (Eds B. de Vivo, M.L. Frezzotti). Blacksburg, Virginia Tech, 117-130.

5. Borodaevskii N.I. (1948) Types of gold deposits subordinated to ultramafic rocks in the Miass and Uchalinsky regions of the Southern Urals. 200 years of gold industry in the Urals. (Eds A.A. Ivanov, I.S. Rozhkov). Sverdlovsk, UFAN SSSR, 316-330. (In Russ.)

6. Davis D.W., Lowenstein T.K., Spenser R.J. (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and CaCl2–NaCl–H2O. Geochim. Cosmochim. Acta, 54(3), 591-601.

7. Emlin E.F., Sinkevich G.A., Yakshin V.I. (1988) Vein quartz of Urals in science and technology. Sverdlovsk, SredneUral. kn. izd-vo, 272 p. (In Russ.)

8. Famin V., Nakashima S., Jolivet L., Philippot P. (2004) Mobility of metamorphic fluids inferred from infrared microspectroscopy on natural fluid inclusions: the example of Tinos Island, Greece. Contrib. Mineral. Petrol., 146(4), 736-749.

9. Glagolev E.V. (2006) Quartz deposit Gora Khrustalnaya. Mineralʼnoe syrʼe Urala, 2(5), 40 p. (In Russ.)

10. Gleeson S.A., Roberts S., Fallick A.E., Boyce A.J. (2008) Micro-Fourier Transform Infrared (FT-IR) and δD value investigation of hydrothermal vein quartz: Interpretation of fluid inclusion δD values in hydrothermal systems. Geochim. Cosmochim. Acta, 72, 4595-4606.

11. Gotte T., Pettke T., Ramseyer K., Koch-Muller M., Mullis J. (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. Amer. Miner., 96, 802-813.

12. Gritsuk A.N. (2003) Petrogeochemical features and ore content of the Talovsky gabbro-hyperbasite massif. Cand. geol. and min. Sci. diss. Moscow, Moscow State Univ., 148 p. (In Russ.)

13. Grzechnik A., Zimmermann H.D., Hervig R.L., King P.L., McMillan P.F. (1996) FTIR micro-reflectance measurements of the CO3 2± ion content in basanite and leucitite glasses. Contrib. Mineral. Petrol., 125, 311-318.

14. Kats A. (1962) Hydrogen in Alpha-quartz. Philips Res. Rep., 17, 201-279.

15. Kazantsev Yu.V., Kazantseva T.T. (2016) Fundamental problems of Southern Urals geology. Ufa, Gilem Publ., 312 p. (In Russ.)

16. Koch-Muller M., Dera P., Fei Y., Reno B., Sobolev N., Hauri E., Wysoczanski R. (2003) OH– in synthetic and natural coesite. Amer. Miner., 88, 1436-1445.

17. Koch-Muller M., Rhede D. (2010) IR absorption coefficients for water in nominally anhydrous high-pressure minerals. Amer. Miner., 95, 770-775.

18. Krinitskii D.D., Krinitskaya V.M. (1963) Geological structure of middle currant of Sakmara Rever. Report of Mikhailovskaya Partie on geological survey 1 : 50 000 scale, 1961–1962. Ufa, Bashkirgeologiya. (In Russ., unpublished)

19. Kronenberg A.K. (1994) Hydrogen speciation and chemical weakening of quartz. Rev. Mineral., 29, 123-176.

20. Kuznetsov S.K. (1998) Vein quartz in the Subpolar Urals. St.Petersburg, Nauka Publ., 203 p. (In Russ.)

21. Kuznetsov S.K., Lyutoev V.P., Shanina S.N., Svetova E.N., Sokerina N.V. (2011) Features of the quality of vein quartz from the Ural deposits. Izv. Komi NTs UrO RAN, 4(8), 65-72. (In Russ.)

22. Lennykh V.I. (1963) Petrography, features of metamorphism and absolute age of rocks of the Maksyutov Complex. Magmatizm, metamorfizm, metallogeniya Urala: Proceedings of the I Ural petrographic meeting, Iss. 3. Sverdlovsk, UFAN SSSR, 245-255. (In Russ.)

23. Melnikov E.P. (1988) Geology, genesis and industrial types of quartz deposits. Moscow, Nedra Publ., 216 p. (In Russ.)

24. Miallier D., Gibert F., Fain J., Pilleyre T., Sanzelle S. (2001) Fluid inclusions in quartz: interference with thermoluminescence and its application to dating. Quater. Sci. Rev., 20, 901-905. https://doi.org/10.1016/S0277- 3791(00)00030-5

25. Miyoshi N., Yamaguchi Y., Makino K. (2005) Successive zoning of Al and H in hydrothermal vein quartz. Amer. Miner., 90(2-3), 310-315.

26. Mohan M.R., Prasad P.S.R. (2002) FTIR investigation on the fluid inclusions in quartz veins of the Penakacherla Schist Belt. Curr. Sci., 83(6), 755-760.

27. Moore G., Chizmeshya A., McMillan P.F. (2000) Calibration of a reflectance FTIR method for determination of dissolved CO2 concentration in rhyolitic glasses. Geochim. Cosmochim. Acta, 64(20), 3571-3579.

28. Nikandrova N.K., Anfilogov V.N., Igumentseva M.A., Kabanova L.Ya. (2014) Homogenization temperatures and the composition of gas-liquid inclusions from the Gora Khrustalnaya deposit (Middle Urals). Dokl. Akad. Nauk, 456(1), 554-557. (In Russ.)

29. Pichavant M., Ramboz C., Weisbrod A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. I. Phase equilibria analysis – a theoretical and geometrical approach. Chem. Geol., 37, 1-27.

30. Polenov Yu.A. (2008) Endogenous quartz-vein formations of the Urals. Ekaterinburg, UGGGA, 271 p. (In Russ.)

31. Polenov Yu.A., Ogorodnikov V.N., Savichev A.N. (2014) Quartz from fulfillment veins of the Urals. Izv. UGGU, 3(35), 5-11. (In Russ.)

32. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (topical issues of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DizajnPoligrafServis Publ., 280 p. (In Russ.)

33. Roedder E. (1987) Fluid inclusions in minerals. V. 1. Moscow, Mir Publ., 560 p. (In Russ.)

34. Shmelev V.R., Ivanov K.S., Karsten L.A. (1995) On the metamorphism of ultramafic rocks of the Maksyutov Complex. Tr. IGG UrO RAN, vyp. 142, 106-108. (In Russ.)

35. Shtenberg M.V. (2014) Water and hydrogen-containing groups in vein quartz from Ural quartz deposits. Lithosphere (Russia), (3), 102-111. (In Russ.)

36. Shtenberg M.V., Ankusheva N.N. (2015) Quartz from hydrothermal veins of the Arkaim Area, South Urals: data on vibrational spectroscopy, gas chromatography, and fluid inclusions. Mineralogiya, (4), 112-122. (In Russ.)

37. Sigov A.P. (1948) Gold-ores deposits of North-Miass. Sverdlovsk, UFAN SSSR, 296-304. (In Russ.)

38. Spenser R.J., Moller N., Weare J.N. (1990) The prediction of mineral solubilities in mineral waters: a chemical equilibrium model for the Na–K–Ca–Mg–Cl–SO4 system at temperatures below 25°C. Geochim. Cosmochim. Acta, 54(3), 575-590.

39. Sterner S.M., Hall D.L., Keppler H. (1995) Compositional re-equilibration of fluid inclusions in quartz. Contrib. Mineral. Petrol., 119, 1-15.

40. Vertushkov G.N. (1955) Metamorphism of vein quartz. Tr. SGI. Materialy po Geologii Urala, 22, 193-201. (In Russ.)

41. Vertushkov G.N., Boriskov F.F., Emlin E.F. (1970) Vein quartz from the eastern slope of the Urals. Sverdlovsk, SGI, 103 p. (In Russ.)

42. Wilkinson J.J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.

43. Zecchini P., Yamni K., Viard B., Dothee D. (1994) A new method for the determination of concentrations of impurities in quartz crystals. IEEE Int. frequency control symp., 91-98.


Review

For citations:


Ankusheva N.N., Shtenberg M.V., Korekina M.A. Formation conditions of quartz deposits in the Southern Urals: Fluid inclusion data and IR spectroscopy. LITHOSPHERE (Russia). 2022;22(6):859-871. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-6-859-871

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)