Preview

LITHOSPHERE (Russia)

Advanced search

On the fundamental possibility of using the bacterial and catagenetic hypotheses of the origin of oil in assessing its resources

https://doi.org/10.24930/1681-9004-2022-22-4-512-525

Abstract

   Research subject. The estimations of oil resources in Western Siberia obtained using a basin modeling of the Bazhenov formation as an oil source stratum indicated a significant deficit of its potential, calculated based on the pyrolytic kinetic parameters of catagenesis.

   Aim. To search for possible additional oil generating mechanisms parallel to catagenesis, thus clarifying the conceptual foundations of the modern theory of the organic origin of oil.

   Key points. Based on a review of literature publications, a hypothesis was formulated about the evolution of organic matter from sedimentary flow floccules to the injection of proto-oil into the microcracks of the autofluid fracturing of source rocks. In the upper unconsolidated bottom sediment layers, biofilms appear whose microbial matrix forms a basis for future kerogen. Proto-oil bitumoids appear as a by-product of biofilm microbial metabolism under the anaerobic conditions at diagenesis stage. Рroto-oil bitumoids are encapsulated and absorbed on the surfaces and inside the chambers and conducting channels of the biofilm polymer matrix (future kerogen). Local ultra-high pressure (LUHP) inside kerogen grains appears at the final “smectite – illite” transition stage of host clays, acting as a driving force for encapsulated bitumoid expulsion from kerogen grains. On the walls of microcracks, proto-oil bitumoids undergo hydropyrolysis, consuming cohesive film water and changing the surface philicity. Microphotographs and SEM images of thin sections are provided in order to illustrate LUHP-expulsion traces. Two types of oil source rocks are differentiated based on the possibility of proto-oil LUHP expulsion: those with a plastic mineral framework and a rigid mineral framework.

   Conclusion. The presence of porous spaces filled with bitumoids was established in the kerogen of immature potentially oil source rocks. This mass of encapsulated bitumoids is an additional resource of oil generation within the “oil window”. Their expulsion volume can be estimated and attributed to a certain temperature range. Directions for further research are outlined.

About the Author

V. F. Grishkevich
Tyumen Industrial University
Russian Federation

Vladimirn F. Grishkevich

625000

38 Volodarsky st.

Tyumen



References

1. Afanasʼeva M. S., Amon E. O. (2014) Fossilization of radiolarian skeletons. Skeleton formation and biomineralization of various organisms groups for Earth history. Series. Past geo-biological systems. Moscow, Paleontological Inst. RAS, 104-131. (In Russ.)

2. Al Duhailan M. (2014) Petroleum-expulsion fracturing in organic-rich shales: genesis and impact on unconventional pervasive petroleum systems. Golden, Colorado School of Mines; Arthur Lakes Library, 206 p. URL: https://mountainscholar.org/handle/11124/17003

3. Bagaeva T. V. (1998). Sulfate-reducing bacteria – hydrocarbons producers. Dr. boil. sci. diss. Kazan, KSU, 320 p. (In Russ.)

4. Batalin O. Yu., Vafina N. G. (2013) Forms of free-gydrocarbons capture by kerogen. Mezhdunarodnyi zhurnal prikladnykh i fundamentalʼnykh issledovanii, (10), 418-425. (In Russ.) URL: https://applied-research.ru/ru/article/view?id=4221

5. Bazhenova O. K., Burlin Yu. K., Sokolov B. A., Hain V. E. (2000) Geology and geochemicry of oil and gas. (Ed. B. A. Sokolov). Moscow, Moscow State Univ. Publ., 384 p. (In Russ.) URL: https://www.geokniga.org/books/4543

6. Buongiorno J. (2018) Microbial Communities and Biogeochemistry in Marine Sediments of the Baltic Sea and the High Arctic, Svalbard. Knoxville, The University of Tennessee, 299 p. https://www.academia.edu/67216075/Microbial_Communities_and_Biogeochemistry_in_Marine_Sediments_of_the_Baltic_Sea_and_the_High_Arctic_Svalbard

7. Gavrilov V. P., Galushkin Yu. I. (2010) Geodynamic analysis of oil and gas basins (basin modeling). Moscow, Nedra Publ., 227 p. (In Russ.) URL: https://www.geokniga.org/bookfiles/geokniga-geodinamicheskiy-analiz-neftegazonosnyh-basseynov-basseynovoe-modelirovanie.pdf

8. Grishkevich V. F. (2021) Bazhenov horizon of Western Siberia: in search for new harmony. Tyumen, TIU Publ., 279 p. (In Russ.)

9. Kalmykov G. A. (2016) Bazhenov oil and gas complex structure as differentiated oil productivity forecasting basis. Dr geol. and min. sci. diss. Moscow, MSU, 391 p. (In Russ.)

10. Kalmykov G. A., Balushkina N. S. (2017) West Siberian Bazhenov formation rock’s pore space oil saturation model and its usage for resource potential evaluating. Moscow, GEOS Publ., 247 p. (In Russ.) URL: https://www.rfbr.ru/rffi/ru/books/o_2052694

11. Kashapov R. S., Oblasov N. V., Goncharov I. V., Samoilenko V. V., Grin’ko A. A., Fadeeva S. V. (2019) Determination of source rocks kinetic parameters using the destruction pyrolysis method. Oil and gas geology. Theory and practice, 14 (1), 1-20. (In Russ.) https://doi.org/10.17353/2070-5379/6_2019

12. Kietzmann D. A., Palma R. M., Riccardi A. C., Martín-Chivelet J., López-Gómez J. (2014) Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sediment. Geol. J., 302, 64-86. https://doi.org/10.1016/j.sedgeo.2014.01.002

13. Kontorovich A. E., Burshtein L. M., Livshits V. R. (2021) The theory of naphthidogenesis: a quantitative model of the catagenetic evolution of aquatic organic matter. Geol. Geofiz., 62 (8), 1026-1047. (In Russ.) https://doi.org/10.15372/gig2021119

14. Kontorovich A. E., Fomin A. N., Krasavchikov V. O., Istomin A. V. (2009) Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin. Geol. Geofiz., 50 (11), 1191-1200. (In Russ.)

15. Kontorovich A. E., Yan P. A., Zamirailova A. G., Kostyreva E. A., Eder V. G. (2016) Classification of rocks of the bazhenov formation. Geol. Geofiz., 57 (11), 2034-2043. (In Russ.) https://doi.org/10.15372/GiG20161106

16. Kozlova E. V., Fadeeva N. P., Kalmykov G. A., Balushkina N. S., Pronina N. V., Poludetkina E. N., Kostenko O. V., Yurchenko A. Yu., Borisov R. C., Bychkov A. Yu., Kalmykov A. G., Hamidullin R. A., Strelʼtsova E. D. (2015) Kerogen-saturated deposit’s organic matter geochemical parameters studying technology (on the West Siberia Bazhenov formation example). Vest. Mosk. Univ., Ser. 4, Geol., 4 (5), 44-53. (In Russ.)

17. Lewan M. D. (1985) Evaluation of petroleum generation by hydrous phrolysis experimentation. Philosophical Trans. Royal Soc. London. Series A, Math. Phys. Sci., A315 (1531), 123-134. https://doi.org/10.1098/rsta.1985.0033

18. Lisitsyn A. P. (1994) The marginal filter of oceans. Okeanologiya (Moscow), 34 (5), 735-747. (In Russ.)

19. Löhr S. C., Baruch E. T., Hall P. A., Kennedy M. J. (2015) Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem., 87, 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010

20. Melenevskii V. N., Leonova G. A., Bobrov V. A., Kashirtsev V. A., Krivonogov S. K. (2015) Transformation of organic matter in the holocene sediments of Ochki lake (southern Baikal region) according to pyrolysis data. Geokhimiiya, (10), 925-944. (In Russ.) https://doi.org/10.7868/S0016752515080051

21. Nemova V. D. (2012) Lithology and reservoir properties of the Bazhenov horizon deposits in the west of Ob Latitudinal region. Cand. geol. and min. sci. diss. Moscow, MSU, 171 p. (In Russ.)

22. Parnell J., Carey P. F. (1995) Emplacement of bitumen (asphaltite) veins in the Neuquen Basin, Argentina. AAPG Bull., 79 (12), 1798-1816. https://doi.org/10.1306/7834DF08-1721-11D7-8645000102C1865D

23. Peters K. E. (1986) Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull., 70 (3), 318-329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D

24. Plakunov V. K., Nikolaev Yu. A. (2016) Fundamentals of dynamic biochemistry: textbook. Moscow, Logos Publ., 214 p. (In Russ.)

25. Reyes J., Jiang C., Lavoie D., Milovic M., Robinson R., Zhang S., Armstrong D., Mort A. (2016) Determination of hydrocarbon generation and expulsion temperature of organic-rich Upper Ordovician shales from Hudson Bay and Foxe basins using modified hydrous pyrolysis, organic petrography, Rock-Eval analysis and orga nic solvent extraction. Geol. Surv. Canada, open file 8049, 1-60. https://doi.org/10.4095/299254

26. Ryazanova T. A., Pavlutkin I. G., Kudamanov A. I., Markov V. V. (2020) Morphological diversity of plankton and bituminous matter in the Upper Cretaceous Berezovian and Gankinskian formations in the south of West-Siberian basin. Neftyanaya Provintsiya, 24 (4), 21-45. (In Russ.) https://doi.org/10.25689/NP.2020.4.21-45

27. Shaikhutdinova G. H. (2020) Petrographic study of oil migration on the example of Imilorskoye field (Kogalymsky petroleum region, Western Siberia). Lithosphere (Russia), 20 (4), 592-600. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-4-592-600

28. Syunyaev Z. I., Safieva R. Z., Syunyaev R. Z. (1990) Petroleum dispersive system. Moscow, Khimiya Publ., 226 p. (In Russ.) https://www.twirpx.com/file/1038891

29. Tisso B., Welte D. (1978) Petroleum formation and accurrences. N. Y., Spinger-Valas, 504 p.

30. Vandenbroucke M., Largeau C. (2007) Kerogen origin, evolution and structure. Org. Geochem., 38, 719-833. https://doi.org/10.1016/j.orggeochem.2007.01.001

31. Vassoevich N. B. (1986) Selected studies. Geochemistry of organic matter and oil origin. (Eds V. V. Menner, V. E. Khain). Moscow, Nauka Publ., 367 p. (In Russ.) URL: https://www.geokniga.org/books/16562

32. Zdobin D. Yu. (2016) Marine organo-mineral soils. Formation conditions, composition, structure, physical and chemical properties. Dr. geol. and min sci. diss. St.Petersburg, SPbSU, 584 p. (In Russ.)

33. Zkhus I. D., Bakhtin V. V. (1979) Clay lithological transformation within abnormal high pressure zones. (Ed. M. M. Aliev). Moscow, Nauka Publ., 133 p. (In Russ.) URL: https://www.geokniga.org/bookfiles/geokniga-litogeneticheskie-preobrazovaniya-glin-vzonah-avpd.pdf

34. Zobell C. E. (1952) Part played by bacteria in petroleum formation 1. J. Sediment. Petrol., 22 (1), 42-49. https://doi.org/10.1306/D42694B3-2B26-11D7-8648000102C1865D

35. Zonneveld K. A. F., Versteegh G. J. M., Kasten S., Eglinton T. I., Emeis K.-C., Huguet C., Koch B. P., de Lange G. J., de Leeuw J. W., Middelburg J. J., Mollenhauer G. F. Prahl G., Rethemeyer J., Wakeham S. G. (2010) Selective preservation of organic matter in marine environments; Processes and impact on the sedimentary record. Biogeosciences, 7 (2), 483-511. https://doi.org/10.5194/bg-7-483-2010


Review

For citations:


Grishkevich V.F. On the fundamental possibility of using the bacterial and catagenetic hypotheses of the origin of oil in assessing its resources. LITHOSPHERE (Russia). 2022;22(4):512-525. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-4-512-525

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)