Preview

LITHOSPHERE (Russia)

Advanced search

Geology, mineralogy, geochemistry and conditions of forming the Tukan gold-quartz deposit (Khudolaz trough, South Urals)

https://doi.org/10.24930/1681-9004-2022-22-2-200-218

Abstract

Research subject. Detailed mineralogical and geochemical studies of rocks of the Tukan gold-quartz deposit (quartz veins, dolerites, gabbro-diorites) were carried out. The deposit is one of numerous small gold-quartz occurrences in the Khudolaz trough of the West Magnitogorsk zone.

Methods. The morphology and composition of native gold was studied using an Axios kop 40 A optical microscope and Tescan Vega 3 and JEOL-6390LV scanning electron microscopes. The chemical composition of rocks was determined by X-ray fluorescence (Carl Zeiss VRA-30) and atomic emission (Shimadzu ICPE-9000) analyzes. Fluid inclusions were analyzed using Linkam TMS-600 thermostage equipped with Link-System 32 DV-NC software and an Olympus BX51 optical microscope. The gas composition of fluid inclusions was examined by Raman spectroscopy (Horiba LabRam HR800 Evolution).

Results. Gold-bearing quartz veins and dolerites intersect ing the gabbrodiorite intrusion of the Khudolaz complex are associated with submeridional strike-slip faults. Native gold has a various morphology and is confined to cracks in quartz veins and altered dolerites. The composition of gold is stable, with the average fineness of 871 ± 8.3‰. An analysis of fluid inclusions in a gold-bearing quartz vein showed that gold was formed at temperatures of no less than 186–230°С from a fluid with a salinity of 4–8 wt % NaCl-eq. The presence of gases СО2, N2 and CH4 was found in fluid inclusions. Dolerites and gabbrodiorites hosting gold-bearing veins contain sulfides (pyrite, pyrrhotite, chalcopyrite, pentlandite, violarite), sulfoarsenides (cobaltite and its analogs), as well as mine rals of Ag (hessite) and Pb (kuranakhite and phases similar in composition to minerals of the dugganite group and burckhardtite). 

Conclusions. The sustained composition of native gold and a narrow range of salinity and homogenization temperatures of fluid inclusions indicate the formation of gold during a single stage of mineralization. The main source of gold could have been the dolerite dikes of the Ulugurtau complex. The presence of CO2, N2 and CH4 gases in fluid inclusions from goldbearing quartz indicates that not only magmatic fluid, but also fluid from the host rocks took part in mineral formation. The low value of the ratio X(CO2)/X(CH4) ≤ 0.7 indicates a moderately reduced ore-forming fluid. Low Au concentrations (0.1– 0.4 ppm) in quartz veins, dolerites, and gabbro-diorites, including those containing visible gold, indicate a weak commercial potential of the deposit

About the Authors

I. R. Rakhimov
Institute of Geology URFC RAS
Russian Federation

16/2 K. Marx st., Ufa 450077



D. E. Saveliev
Institute of Geology URFC RAS
Russian Federation

16/2 K. Marx st., Ufa 450077



E. S. Shagalov
A.N. Zavaritsky Institute of Geology and Geochemistry UB RAS
Russian Federation

15 Akad. Vonsovsky st., Ekaterinburg 620110



N. N. Ankusheva
Institute of Mineralogy SU FRC MG UB RAS
Russian Federation

Ilmeny Reserve, Miass 456317



E. A. Pankrushina
A.N. Zavaritsky Institute of Geology and Geochemistry UB RAS
Russian Federation

15 Akad. Vonsovsky st., Ekaterinburg 620110



References

1. Bodnar R.J., Vityk M.O. (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Fluid inclusions in minerals: methods and applications. Blacksburg, Virginia Tech, 117-130.

2. Borisenko A.S. (1982) The analysis of salt composition of fluid inclusions by means cryometry. The application of thermobarogeochemistry methods for ore deposit prospecting. Мoscow, Nedra Publ., 37-46. (In Russ.)

3. Buchkovskii E.S., Perminov G.M., Krestinin B.A., Karavaev I.N., Petrov Yu.N. (1974) Khudolaz synclinal. Searches of copper-nickel sulfide ores by scale 1 : 50 000. Report on object. In 2 vol. V. 1. Ufa, GosGeolPhond, p. (In Russ. unpublished)

4. Burke E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55(1-4), 139-158.

5. Etschmann B., Pring A., Putnis A., Grguric B.A., Studer A. (2004) A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S. Amer. Miner., 89(1), 39-50.

6. Damdinov B.B. (2019) Mineral Types of Gold Deposits and Regularities of Their Localization in Southeastern East Sayan. Geol. Rudn. Mestorozhd., 61(2), 118-132. (In Russ.)

7. Fershtater G.B. (2013) Paleozoic intrusive magmatism of the Middle and South Urals. Ekaterinburg, RIO UrO RAN Publ., 368 p. (In Russ.)

8. Gaines R.V., Leavens P.B., Nelen J.A. (1979) Burckhardtite, a new silicate-tellurite from Mexico. Amer. Miner., 64(3-4), 355-358.

9. Gas’kov I.V. (2017) Major impurity elements in native gold and their association with gold mineralization settings in deposits of Asian folded areas. Russ. Geol. Geophys., 58(9), 1080-1092 (translated from Geol. Geofiz., 58(9), 1359-1376).

10. Hurai V., Huraiova´ M., Slobodnı´k M., Thomas R. (2015) Geofluids. Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes. Amsterdam, Elsevier, 489 p.

11. Kazakov P.V., Salikhov D.N. (2006) Mineral resources of the Republic of Bashkortostan (placer gold). Pt 2. Ufa, Gilem Publ., 288 p. (In Russ.)

12. Kim A.A., Zayakina N.V., Makhotko V.F. (1990) Kuksite Pb3Zn3Te6+O6(PO4)2 and cheremnykhite Pb3Zn3Te6+O6(VO4)2 – new tellurates from the Kuranakh gold deposit (Central Aldan, southern Yakutia). Zapiski VMO, 119(5), 50-57. (In Russ.)

13. Kondratieva L.A., Anisimova G.S., Kardashevskaia V.N. (2021) Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals, 11(7), 698.

14. Kuvaevskii Yu.L., Kraev Yu.P., Kuvaevskaya N.D. (1961) Geological structure of the region of the middle reaches of the Khudolaz river. Report of the Koltuban geological survey team for 1959–1960. In 3 vol. V. 1. Ufa, GosGeolFond, 190 p. (In Russ. unpublished)

15. Lam A.E., Groat L.A. (1998) The crystal structure of dugganite, Pb3Zn3Te6+As2O14. Canad. Miner., 36, 823-830.

16. Maslov V.A., Artyushkova O.V. (2010) Stratigraphy and correlation of Devonian deposits of the Magnitogorsk megazone of the South Urals. Ufa, DesignPoligrafService Publ., 288 p. (In Russ.)

17. Mills S.J., Kampf A.R., Kolitsch U., Housley R.M., Raudsepp M. (2010) The crystal chemistry and crystal structure of kuksite, Pb3Zn3Te6+P2O14, and a note on the crystal structure of yafsoanite, (Ca, Pb)3Zn(TeO6)2. Amer. Miner., 95(7), 933-938.

18. Mironova O.F., Naumov V.B., Salazkin A.N. (1992) Nitrogen in Mineral-Forming Fluids. Gas Chromatography Determination on Fluid Inclusions in Minerals. Geochem. Int., 7, 979-991 (translated from Geokhimiya, 58(9), 1359-1376).

19. Petrovskaya N.V. (1973) Native gold. Moscow, Nauka Publ., 247 p. (In Russ.)

20. Prieto A.C., Guedes A., Dória A., Noronha F., Jiménez J. (2012) Quantitative determination of gaseous phase compositions in fluid inclusions by Raman microspectrometry. Spectroscopy Lett., 45(2), 156-160.

21. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DesignPoligraphService Publ., 280 p. (In Russ.)

22. Rakhimov I.R., Vishnevskii A.V., Saveliev D.E. (2021) Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South Urals: The role of R-factor and hydrothermal alteration. Ore Geol. Rev., 138(11), 104411.

23. Rebetsky Yu.L., Sim L.A., Marinin A.V. (2017) From glide mirrors to tectonic stresses. Methods and algorithms. Moscow, Geos Publ., 234 p. (In Russ.)

24. Salikhov D.N., Berdnikov P.G. (1985) Late Paleozoic magmatism and mineralization of the Magnitogorsk megasynclinorium. Ufa, BFAN USSR, 94 p. (In Russ.)

25. Salikhov D.N., Kovalev S.G., Belikova G.I., Berdnikov P.G. (2003) Minerals of the Republic of Bashkortostan (gold). Pt 1. Ufa, Ecology Publ., 222 p. (In Russ.)

26. Salikhov D.N., Pshenichnyi G.N. (1984) Magmatism and mineralization of the early consolidation zone of the Magnitogorsk eugeosyncline. Ufa, BFAN SSSR, 112 p. (In Russ.)

27. Salikhov D.N., Kholodnov V.V., Puchkov V.N., Rakhimov I.R. (2019) Magnitogorsk zone of the South Urals at the Late Paleozoic: magmatism, fluid regime, metallogeny, geodynamics. Moscow, Nauka Publ., 392 p. (In Russ.)

28. Seravkin I.B., Znamensky S.E., Kosarev A.M. (2001) Fracture tectonics and ore content of the Bashkir Trans-Urals. Ufa, Poligrafkombinat Publ., 318 p. (In Russ.)

29. Shaparenko E., Gibsher N., Tomilenko A., Sazonov A., Bul’bak T., Ryabukha M., Khomenko M., Silyanov S., Nekrasova N., Petrova M. (2021) Ore-Bearing Fluids of the Blagodatnoye Gold Deposit (Yenisei Ridge, Russia): Results of Fluid Inclusion and Isotopic Analyses. Minerals, 11(10), 1090. https://doi.org/10.3390/min11101090

30. Sher S.D. (1974) Metallogeny of gold (Eurasia, Africa, South America). Moscow, Nedra Publ., 256 p. (In Russ.)

31. Snachev A.V., Snachev V.I., Rykus M.V., Savel’ev D.E., Bazhin E.A., Ardislamov F.R. (2012) Geology, petrogeochemistry and ore content of carbonaceous deposits of the Southern Urals. Ufa, Design Press Publ., 208 p. (In Russ.)

32. Wilkinson J.J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.

33. Williams S.A. (1978) Khinite, parakhinite, and dugganite, three new tellurates from Tombstone, Arizona. Amer. Miner., 63, 1016-1019.

34. Znamenskii S.E. (2009) Structural conditions for the formation of collisional gold deposits on the eastern slope of the Southern Urals. Ufa, Gilem Publ., 348 p. (In Russ.)

35. Znamenskii S.E., Znamenskaya N.M. (2009) Classification of gold deposits of East slope of the Southern Urals. Geologicheskii Sbornik, (8), 177-186. (In Russ.)

36.


Review

For citations:


Rakhimov I.R., Saveliev D.E., Shagalov E.S., Ankusheva N.N., Pankrushina E.A. Geology, mineralogy, geochemistry and conditions of forming the Tukan gold-quartz deposit (Khudolaz trough, South Urals). LITHOSPHERE (Russia). 2022;22(2):200-218. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-2-200-218

Views: 753


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)