Preview

LITHOSPHERE (Russia)

Advanced search

Vendian of the Middle Urals: Paleoclimatic reconstructions based on chemical weathering indices

https://doi.org/10.24930/1681-9004-2022-22-2-153-178

Abstract

Research subject. The clayey rocks of the Vendian Serebryanka and Sylvitsa groups on the western slope of the Middle Urals.

Material and methods. The research materials comprised data on the content of main rock-forming oxides in clayey rocks (mudstones, shales, fine-grained clayey siltstones, ≈180 samples in total) with the values of losses on ignition <6 wt %. This information, obtained at the beginning of 2000 by the X-ray fluorescence method at the Institute of Geology and Geochemistry, Ural Branch of RAS, was used to calculate the average, minimum and maximum values of various weathering indices. Samples were taken from natural outcrops in the basins of the Chusovaya, Serebryanka, Sylvitsa, Mezhevaya Utka, Usva and Koiva rivers.

Results. It was established that the sedimentary sequences of the Serebryanka and Sylvitsa groups, in which diamictites are present at several levels, do not exhibit a noticeable contrast in the values of various chemical indices of weathering. For example, taking into account the values of standard deviations (±1σ), the values of the Ruxton coefficient for all nine Vendian formations are statistically comparable. The same is characteristic of the average values of CIA, CIW, PIA, ICV and MIA(o) for clayey rocks of different formations. Variations in the average CPA values show that, taking into account ±1σ, only the rocks of the Starye Pechi, Garevka and Perevalok formations can be considered statistically different. Taking into account ±1σ, the clayey rocks of the Buton Formation differ significantly from the fine-grained clastic rocks of the Garevka and Kernos formations in terms of the average value of the Mg-index. The clayey rocks of the Tanin and Kernos formations have a weak or moderate positive correlation between the TiO2/Al2O3 ratio and the Ruxton, PIA, ICV indices and the hydrolyzate modulus. This suggests the dependence of the listed indicators of the intensity of weathering from the composition of rocks in paleocatchments.

Conclusions. The data obtained suggest that, when averaging at the level of formations (even if the formations include quite a lot of undoubtedly glaciogenic deposits), we apparently do not record the specific contribution of the latter and, as a result, we obtain a substantially different picture than that which emerges for other Neoproterozoic deposits, including diamictites, varved clays, and intervals with dropstone.

About the Author

A. V. Maslov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Acad. Vonsovsky st., Ekaterinburg 620110



References

1. Ablizin B.D., Klyuzhina M.L., Kurbatskaya F.A., Kurbatskii A.M. (1982) Upper Riphean and Vendian of the western slope of the Middle Urals. Moscow, Nauka Publ., 140 p. (In Russ.)

2. Au P.-I., Leong Y.-K. (2016) Surface Chemistry and reology of Slurries of Kaolinite and Montmorillonite from Different Sources. KONA Powder Particle J., (33), 17-32.

3. Babechuk M.G., Widdowson M., Kamber B.S. (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363, 56-75.

4. Ban J.-D., Moon S.-W., Lee S.-W., Lee J.-G., Seo Y.-S. (2017) Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju. J. Eng. Geol., 27, 451-462.

5. Barshad I. (1966) The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. Proc. Int. Clay Conf., Jerusalem, 167-173.

6. Bortnikov N.S., Savko A.D., Novikov V.M., Boeva N.M., Soboleva S.V., Zhukhlistov A.P., Dmitriev D.I., Krainov A.V., Zhegallo E.A., Bushueva E.B. (2016) The Latnenskoe refractory clay deposit (Central Russia). Lithol. Miner. Resour., 51(6), 425-438.

7. Brasier M., McCarron G., Tucker R., Leather J., Allen P., Shields G. (2000) New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28, 175-178.

8. Buggle B., Glaser B., Hambach U., Gerasimenko N., Marković S. (2011) An evaluation of geochemical weathering indices in loess-paleosol studies. Quat. Int., 240, 1221.

9. Ceryan S. (2018) Weathering Indices Used in Evaluation of the Weathering State of Rock Material. Handbook of Research on Trends and Digital Advances in Engineering Geology. IGI Global, 132-186.

10. Chumakov N.M. (2004) Glacial and ice-free climate in the Precambrian. Climate in the Epoches of Major Biospheric Transformations. Moscow, Nauka Publ., 259-270. (In Russ.)

11. Chumakov N.M. (2015) Glaciation of the Earth: History, stratigraphic and biospheric significance. Moscow, GEOS Publ., 160 p. (In Russ.)

12. Chumakov N.M., Sergeev V.N. (2004) The problem of climatic zoning in the Late Precambrian. Climate and biosphere events. Climate in the Epoches of Major Biospheric Transformations. Moscow, Nauka Publ., 271-289. (In Russ.)

13. Cox R., Lowe D.R., Cullers R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59, 2919-2940.

14. Cullers R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvaniane-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181-203.

15. Dellinger M., Gaillardet J., Bouchez J., Calmels D., Galy V., Hilton R.G., Louvat P., France-Lanord C. (2014) Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth Planet. Sci. Lett., 401, 359-372.

16. Dingle R.V., Lavelle M. (1998) Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr., Palaeoclimatol., Palaeoecol., 141, 215-232.

17. Dinis P.A., Garzanti E., Hahn A., Vermeesch P., CabralPinto M. (2020) Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Sci. Rev., 201, 103039. https://doi. org/10.1016/j.earscirev.2019.103039

18. Duzgoren-Aydin N.S., Aydin A., Malpas J. (2002) Reassessment of chemical weathering indices: case study of piroclastic rocks of Hong Kong. Eng. Geol., 63, 99-119.

19. Ehrmann W. (1998) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr., Palaeoclimatol., Palaeoecol., 139, 213-231.

20. Fedo C.M., Nesbitt H.W., Young G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.

21. Fedorova N.M., Levashova N.M., Bazhenov M.L., Meert J.G., Sergeeva N.D., Golovanova I.V., Danukalov K.N., Kuznetsov N.B., Kadyrov A.F., Khidiyatov M.M. (2013) The East European Platform in the Late Ediacaran: new paleomagnetic and geochronological data. Russ. Geol. Geophys., 54(11), 1392-1401.

22. Gaillardet J., Dupré B., Louvat P., Allègre C.J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol., 159, 3-30.

23. Garzanti E., Resentini A. (2016) Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol., 336, 81-95.

24. Geographical Atlas of Russia. (1997) Moscow, Cartography Publ., 164 p. (In Russ.)

25. Goldberg K., Humayun M. (2010) The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeogr., Palaeoclimatol., Palaeoecol., 293, 175-183.

26. González-Álvarez I., Kerrich R. (2012) Weathering intensity in the Mesoproterozoic and modern large-river systems: A comparative study in the Belt-Purcell Supergroup, Canada and USA. Precambr. Res., 208–211, 174-196.

27. Grazhdankin D.V., Marusin V.V., Meert J., Krupenin M.T., Maslov A.V. (2011) Kotlin Regional Stage in the South Urals. Dokl. Earth Sci., 440(1), 1222-1226.

28. Grazhdankin D.V., Maslov A.V. (2015) The room for the Vendian in the International Chronostratigraphic Chart. Russ. Geol. Geophys., 56, 549-559.

29. Grazhdankin D.V., Maslov A.V., Krupenin M.T., Ronkin Yu.L. (2010) Sedimentary systems of the Sylvitsa Group (Upper Vendian of the Middle Urals). Ekaterinburg, UB RAS Publ., 280 p. (In Russ.)

30. Guo Y., Yang S., Su N., Li C., Yin P., Wang Z. (2018) Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochim. Cosmochim. Acta, 227, 48-63.

31. Harnois L. (1988) The CIW index: a new chemical index of weathering. Sediment. Geol., 55, 319-322.

32. Heidari A., Osat M., Konyushkova M. (2022) Geochemical indices as efficient tools for assessing the soil weathering status in relation to soil taxonomic classes. Catena, 208, 105716. https://doi.org/10.1016/j.catena.2021.105716

33. Hessler A.M., Zhang J., Covault J., Ambrose W. (2017) Continental weathering coupled to Paleogene climate changes in North America. Geology, 45, 911-914.

34. Huber H., Koeberl C., McDonald I., Reimold W.U. (2001) Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: Search for an extraterrestrial component. Geochim. Cosmochim. Acta, 65(12), 2007-2016.

35. Irfan T.Y. (1999) Characterization of weathered volcanic rocks in Hong Kong. Quart. J. Eng. Geol., 32, 317-348.

36. Irfan T.Y. (1996) Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quart. J. Eng. Geol., 29, 5-35.

37. Kellerhals P., Matter A. (2003) Facies analysis of a glaciomarine sequence, the Neoproterozoic Mirbat Sandstone Formation, Sultanate of Oman. Eclogae Geologicae Helvetiae, 96, 49-50.

38. Kuznetsov N.B., Romanyuk T.V., Belousova E.A., Krupenin M.T., Maslov A.V. (2017) The results of geochronological and isotope–geochemical study of zircons from tuff of the Sylvitsa group (western slope of the Middle Urals): the origin of ash layers in Vendian rocks of the East European Platform. Dokl. Earth Sci., 473(1), 359362.

39. Kuznetsov V.G. (2011) Lithology. Foundations of gene ral (theoretical) lithology. Moscow, Nauchnyi mir Publ., 360 p. (In Russ.)

40. Levashova N.M., Bazhenov M.L., Meert J.G., Kuznetsov N.B., Golovanova I.V., Danukalov K.N., Fedorova N.M. (2013) Paleogeography of Baltica in the Ediacaran: paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambr. Res., 236, 16-30.

41. Li C., Yang S. (2010) Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Amer. J. Sci., 310, 111-127.

42. Li Z.-X., Evans D.A.D., Halverson G.P. (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol., 294, 219-232.

43. Lindsey D.A. (1969) Glacial sedimentation of the Precambrian Gowganda Formation, Ontario, Canada. GSA Bull., 80, 1685-1704.

44. Marques E.A.G., Amaral Vargas E.D. Jr., Leao M.F. (2020) Weathering of Rocks in Brazil. Soft Rock Mechanics and Engineering. Springer Nature Switzerland AG, 251-290.

45. Maslov A.V. (2020) Categories of Vendian catchments – sources of fine-grained aluminosiliciclastic materials for the Serebryanka and Sylvitsa group deposits (Middle Urals). Lithosphere (Russia), 20(6), 751-770. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-6-751-770

46. Maslov A.V. (2010а) Glaciogenic and related sedimentary rocks: main lithochemical features. Communication 1. Late Archean and Proterozoic. Lithol. Miner. Resour., 45(4), 377-397.

47. Maslov A.V. (2010б) Glaciogenic and related sedimentary rocks: main lithochemical features. Communication 2. The Paleozoic and Cenozoic. Lithol. Miner. Resour., 45(5), 443-464.

48. Maslov A.V. (2011) Vendian sedimentary sequences and paleoclimate indicators: new evidence. Problems of mineralogy, petrography and metallogeny. Scientific materials. readings in memory of P.N. Chirvinsky. Iss. 14. Perm’, Perm’ University Publ., 93-99. (In Russ.)

49. Maslov A.V. (2014) On the reconstruction of the paleoclimatic conditions of the formation of deposits of the Krutikha Subformation of the Chernyi Kamen Formation (Middle Urals). Tr. IGG UB RAS. Vyp. 161, 70-71. (In Russ.)

50. Maslov A.V., Krupenin M.T., Gareev E.Z. (2003) Lithological, lithochemical, and geochemical indicators of paleoclimate: evidence from Riphean of the Southern

51. Urals. Litol. Polezn. Iskop., 38(5), 427-446. (In Russ.)

52. Maslov A.V., Krupenin M.T., Kiseleva D.V. (2011) Lithogeochemistry of the fine-grained siliciclastic rocks of the Vendian Serebryanka group of the Central Urals. Geochem. Int., 49(10), 974-1001.

53. Maslov A.V., Meert J., Levashova N.M., Ronkin Yu.L., Grazhdankin D.V., Kuznetsov N.B., Krupenin M.T., Fedorova N.M., Ipat’eva I.S. (2013a) New constraints for the age of Vendian glacial deposits (Central Urals). Dokl. Earth Sci., 449(1), 303-308.

54. Maslov A.V., Podkovyrov V.N. (2018) Ocean redox state at 2500‒500 Ma: modern concepts. Lithol. Miner. Resour., 53(3), 190-211.

55. Maslov A.V., Podkovyrov V.N., Grazhdankin D.V., Fedorov Yu.N., Gareev E.Z. (2013b) Some lithogeochemical characteristics of fine-grained clastic rocks in fol ded and unfolded Vendian molasses (western megazone of the South and Middle Urals, easternand north-eastern regions of Russian Platform). Lithosphere (Russia), (1), 17-35. (In Russ.)

56. Maynard J.B. (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J. Geol., 100, 279289.

57. McLennan S.M. (1993) Weathering and global denudation. J. Geol., 101, 295-303.

58. Mohsen Q., El-Maghraby A. (2010) Characterization and assessment of Saudi clays raw material at different area. Arab. J. Chem., (3), 271-277.

59. Nadłonek W., Bojakowska I. (2018) Variability of chemical weathering indices in modern sediments of the Vistula and Odra rivers (Poland). Appl. Ecol. Environ. Res., 16, 2453-2473.

60. Nesbitt H.W., Young G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.

61. Nesbitt H.W., Young G.M. (1989) Formation and diagenesis of weathering profiles. J. Geol., 97, 129-147.

62. Ojakangas R.W., Matsch C.L. (1980) Upper Precambrian (Eocambrian) Mineral Fork Tillite of Utah: A continental glacial glaciomarine sequence. GSA Bull., 91, 495-501.

63. Parker A. (1970) An index of weathering for silicate rocks. Geol. Mag., 107, 501-504.

64. Price J.R., Velbel M.A. (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol., 202, 397-416.

65. Rieu R., Allen P.A., Etienne J.L., Cozzi A., Wiechert U. (2006) A Neoproterozoic glacially influenced basin margin succession and “atypical” cap carbonate associated with bedrock paleovalleys, Mirbat area, southern Oman. Basin Res., 18, 471-496.

66. Rieu R., Allen P.A., Plötze M., Pettke T. (2007a) Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambr. Res., 154, 248-265.

67. Rieu R., Allen P.A., Plötze M., Pettke T. (2007b) Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology, 35, 299-302.

68. Ronkin Yu.L., Grazhdankin D.V., Maslov A.V., Mizens G.A., Matukov D.I., Krupenin M.T., Petrov G.A., Lepikhina O.P., Kornilova A.Yu. (2006) U-Pb (SHRIMP II) age of zircons from ash beds in the Chernokamen Formation, Vendian Sylvitsa Group (Central Urals). Dokl. Earth Sci., 411A(9), 1341-1345.

69. Roy D.K., Roser B.P. (2013) Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondw. Res., 23, 11631171.

70. Ruxton B.P. (1968) Measures of the Degree of Chemical Weathering of Rocks. J. Geol., 76, 518-527.

71. Shao J.Q., Yang S.Y. (2012) Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chin. Sci. Bull., 57, 1178-1187.

72. Sheldon N.D., Tabor N.J. (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev., 95, 1-52.

73. Smith A.G. (2001) Paleomagnetically and tectonically based global maps for Vendian to Mid-Ordovician time. The ecology of the Cambrian radiation. N. Y., Columbian University press, 11-16.

74. Smith A.G., Pickering K.T. (2003) Oceanic gateways as aritical factor to initiate icehouse Earth. J. Geol. Soc. (Lond.), 160, 337-340.

75. Smith A.J.B. (2007) The paleo-environmental significance of the Iron-formations and Iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan basin, South Africa. Magister Sci. dissertation. University of Johannesburg. South Africa, 208 p. The Vendian System. V. 2. Regional Geology. (1990) Berlin Heidelberg, Springer, 273 p.

76. Turgeon S., Brumsack H.-J. (2006) Anoxic vs dyso xic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche basin of central Italy. Chem. Geol., 234, 321-339.

77. Yahaya S., Jikan S.S., Badarulzaman N.A., Adamu A.D. (2017) Chemical Composition and Particle Size Analysis of Kaolin. Traektoriâ Nauki = Path of Science, 3(10), 1001-1004.

78. Yasamanov N.A. (1985) Ancient Climates of the Earth. Leningrad, Gidrometeoizdat Publ., 294 p. (In Russ.)

79. Young G.M. (2001) Comparative Geochemistry of Pleistocene and Paleoproterozoic (Huronian) Glaciogenic Lamin ated Deposits: Relevance to Crustal and Atmospheric Composition in the Last 2.3 Ga. J. Geol., 109, 463-477.

80. Young G.M. (2002) Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in the Wasatch Range, Utah. GSA Bull., 114, 387-399.

81. Yudovich Ya.E., Ketris M.P. (2000) Fundamentals of lithochemistry. St.Petersburg, Nauka Publ., 479 p. (In Russ.)


Review

For citations:


Maslov A.V. Vendian of the Middle Urals: Paleoclimatic reconstructions based on chemical weathering indices. LITHOSPHERE (Russia). 2022;22(2):153-178. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-2-153-178

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)