Preview

LITHOSPHERE (Russia)

Advanced search

New data on the trace element composition and Lu-Hf isotopic system of zircons from the Early Cambrian granites of the Ufaley block (Middle Urals): a step to the correction of geodynamic concepts

https://doi.org/10.24930/1681-9004-2022-22-1-55-74

Abstract

Research subject. Composition and isotopic parameters of zircons and their host granites of the Bitim complex, localised in the eastern part of the Ufaley block (Middle Urals).
Materials and methods. The determination of trace element composition and Lu-Hf isotope system in zircons was carried out by LA-ICP-MS (the “Geoanalitik” shared research facilities of the IGG UB RAS, Ekaterinburg).
Results and conclusions. The images and geochemical features of the main zircon population from granites confirm their magmatic genesis and minimal alteration, which proves previously defined Vendian- Cambrian (520 ± 9 Ma) age for the granites. Younger zircons (401–459 Ma) differing in composition from the older ones, were formed during subsequent tectonic-thermal activity, possibly under the fluid action. The mixed mantle-crustal nature of substrate for the granite melting is indicated by specific isotopic parameters (87Sr/86Sr = 0.703389, εHf(t)aver = +6.3) and a number of characteristic ratios for zircons and granites. The geodynamic concepts of the granite formation settings of the Bitim complex are corrected: in the Vendian–Early Cambrian, a transform-type margin has developed in this sector, the divergent movements on which have been accompanied by a break in the continuity of the crust and the intrusion of a deep mantle diapir; the participation of the slab substance in the magma generation might also be assumed.
Conclusions. The results obtained can be used for the geological mapping and correction of a general geodynamic scheme for the junction zone between the Ural Mobile Belt and the East European platform.

About the Author

G. Yu. Shardakova
A.N. Zavaritsky Institute of Geology and Geochemistry, Urals Branch of RAS
Russian Federation

15 Akad. Vonsovsky st., Еkaterinburg 620016



References

1. Abratis M., Worner G. (2001) Ridge collision, slab-window formation, and the fl ux of Pacifi c asthenosphere into the Caribbean realm. Geol., 29(2), 127-130. http://dx.doi.org/10.1130/0091-7613(2001)029%3C0127:RCSWFA%3E2.0.CO;2

2. Altherr R., Holl A., Hegner E., Langer C., Kreuzer H. (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51-73. http://dx.doi.org/10.1016/S0024-4937(99)00052-3

3. Andreichev V.L. (2010) The evolution of the Pechora plate basement on the isotopic-geochronological data. Doct. Geol. and min. sci. diss. Ekaterinburg, 47 p. (In Russ.)

4. Balashov Yu.A., Skublov S.G. (2011) Contrast of geochemistry of magmatic and secondary zircons. Geokhimiya, 6, 622-633. (In Russ.) https://doi.org/10.1134/S0016702911040033

5. Bonin B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97, 1-29.

6. Didenko A.N., Khanchuk A.I. (2019) Change in the Geodynamic SettingsiIn The Pacific-Eurasia Transition Zonea at the End of the Early Cretaceous. Dokl. Earth Sci., 487(2), 873-876. https://doi.org/10.31857/S0869-56524874405-408

7. Gavrilova S.P., Gradоvsкii I.F., Кaraulоv V.B., Malyutin S.A., Press D.A., Sokolovskii A.К., Uspensкауa E.A. (2007) Late Proterozoic Metamorphism of the Ufaley Anticlinorium (Middle Urals). Izv. Vyssh. Uchebn. Zaved. Geol. i Razvedka, 1, 11-21. (In Russ.)

8. Grebennikov A.V., Popov V.K., Khanchuk A.I. (2013) Experience of petrochemical typification of acid volcanic rocks from different geodynamic settings. Tikhokean. Geol., 7(3), 212-216. (In Russ.) https://doi.org/10.1134/S1819714013030044

9. Grebennikov A.V., Khanchuk A.I (2021) Geodynamics and Magmatism of the Pacific-Type Transform Margins. Aspects and Discriminant Diagrams. Tikhokean. Geol., 40(1), 3-24. (In Russ.) https://doi.org/10.30911/0207-4028-2021-40-1-3-24

10. Calmus T., Pallares C., Maury R.C., Aguillon-Robles A., Bellon H., Benoit M., Michaud F. (2011) Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: Slab tearing versus lithospheric rupture of the Gulf of California. Pure Appl. Geophys., 168, 1303-1330. http://dx.doi.org/10.1007/s00024-010-0204-z

11. Castillo P.R. (2008) Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geol. Soc. Amer. Bull., 120, 451-462. http://dx.doi.org/10.1130/B26166.1

12. Chauvel C., Blichert-Toft J. (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett., 190(3–4), 137-151. https://doi.org/10.1016/S0012-821X(01)00379-X

13. Eby G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geol., 20, 641-644.

14. Ferry J.M., Watson E.B. (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zrin-rutile thermometers. Contrib. Mineral. Petrol., 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0

15. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. (2001) A geochemical classification for granitic rocks. J. Petrol., 42, 1771-1802. http://dx.doi.org/10.1093/petrology/42.11.2033

16. Frost C.D., Frost B.R. (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J. Petrol., 52, 39-53. http://dx.doi.org/10.1093/petrology/egq070

17. Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au-Ag–(Cu) deposit, SE Australia. Chem. Geol., 259, 131-142. https://doi.org/10.1016/j.chemgeo.2008.10.035

18. Geisler T., Pidgeon R.T., Kurtz R., Van Bronswijk W., Schleicher H. (2003) Experimental hydrothermal alteration of partially metamict zircon. Amer. Miner., 88(10), 1496-1513. https://doi.org/10.2138/am-2003-1013

19. Gorring M.L., Kay S.M. (2001) Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. J. Petrol., 42, 1067-1094. http://dx.doi.org/10.1093/petrology/42.6.1067

20. Griffin W.L., Wang X., Jackson S.E., Pearson N.J., O’Reilly S.Y., Xu X.S., Zhou X.M. (2002) Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237-269. doi:10.1016/S0024-4937(02)00082-8

21. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J. (2007) Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geol., 35, 643-646. https://doi.org/10.1130/G23603A

22. Hanchar J.M., Watson E.B. (2003) Zircon saturation thermometry. Rev. Mineral. Geochem., 53(1), 89-112. https://doi.org/10.2113/0530089

23. Hain V.E. (2001) Tectonics of continents and oceans. Moscow, Nauchnyi mir Publ., 606 p. (In Russ.)

24. Hoskin P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69, 637-648. http://dx.doi.org/10.1016/j.gca.2004.07.006

25. Hoskin P.W.O., Ireland T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geol., 28, 627-630. http://dx.doi.org/10.1130/0091-7613(2000)28%3C627:REECOZ%3E2.0.CO;2

26. Hoskin P.W.O., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis., Zircon. Rev. Mineral. Geochem., 53, 7-62. http://dx.doi.org/10.2113/0530027

27. Kaulina T.V. (2010) Formation and transformation of zircon in polymetamorphic complexes. Apatity, 144 p. (In Russ.)

28. Keil’man G.A. (1974) Migmatitic complexes of Mobile Belts. Moscow, Nedra Publ., 200 p. (In Russ.)

29. Kheraskova T.N., Bush V.A., Didenko A.N., Samygin S.G. (2010) Breakup of Rodinia and Early Stages of Evolution of The Paleoasian Ocean. Geotectonics, 44(1), 3-24. https://doi.org/10.1134/S0016852110010024

30. Kholodnov V.V., Bushlyakov I.N. (2002) Halogens in endogenic mineralization. Ekaterinburg, IGG UB RAS, 391 p. (In Russ.)

31. Kholodnov V.V., Shardakova G.Yu., Puchkov V.N., Petrov G.A., Shagalov E.S., Salikhov D.N., Korovko A.V., Pribavkin S.V., Rakhimov I.R., Borodina N.S. (2021) Paleosoic Granitoid Magmatism of the Urals: the Reflection of the Stages of the Geodynamic and Geochemical Evolution of a Collision Orogen. Geodinamika i Tektonofiz., 12(2), 222-245 (In Russ.) https://doi.org/10.5800/GT-2021-12-2-0522

32. Koroteev V.A., Ogorodnikov V.N., Ronkin Yu.L., Sazonov V.N., Polenov Yu.A. (2002) Polychronity and polygeneity of pegmamtites of gneissic-amphibolitic complexes as a result of continuous-discontinuous development of suture zones: example of the Ufalei metamorphic block in the Middle Urals. Dokl. Eearth Sci., 429(2), 1443-1446. https://doi.org/10.1134/S1028334X09090074

33. Kostitsyn Y.A., Belousova E.A., Silant’ev S.A., Bortnik ov N.S., Anosova M.O. (2015) Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochem. Int., 53(9), 759-785. https:// doi.org/10.1134/S0016702915090025

34. Krasnobaev A.A., Rusin A.I., Busharina S.V., Cherednichenko N.V., Davydov V.A. (2010) Composition, zircons and zircone geochronology of metamorphites of the Uphaley complex. Ezhegodnik-2009. Proc. IGG UrO RAN, v. 157. 273-279. (In Russ.)

35. Kuznetsov N.B. (2008) The Cambrian Pre-Uralide–Timanide Orogen: Structural Evidence for Its Collisional Origin. Dokl. Earth Sci., 423, 1383-1387. https://doi.org/10.1134/S1028334X08090122

36. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V. (2005) Pre-Ordovisian Granitoids of the Timan- Ural region and the evolution of Protouraledes-Timanides. Syktyvkar, Geoprint Publ., 100 p. (In Russ.)

37. Lenting C., Geisler T., Gerdes A., Kooijman E., Scherer E.E., Zeh A. (2010) The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. Amer. Miner., 95(8–9), 1343-1348. https://doi.org/10.2138/am.2010.3521

38. Linnemann U., Gehmlich M., Tichomirova M., Bushmann B., Bombach K. (1998) Tectonostratigraphic Events of the Peri-Gondwanan Basement of the SaxoThuringian Composite Terrane (Central European Variscides). Schr. Staatl. Mus. Min. Geol. Dresden, 1(9), 159-161.

39. Loucks R.R., Fiorentini M.L., Rohrlach B.D. (2018) Divergent T–fO2 p aths d uring c rystallisation of H 2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contrib. Mineral. Petrol., 173(12), 1-21. doi. jrg/00410-018-1529-3

40. Makhlaev L.V. (1996) Granitoids of the north of Central Ural Raising: Polar and Polar Urals. Ekaterinburg, UrO RAN 149 p. (In Russ.)

41. Necheukhin V.M., Krasnobaev A.A., Sokolov V.B. (2000) Geochronology and Structural Position of Lower Precambria in the Ural Accretionary Folding Framing of the Russian Plate. General issues of dismemberment of the Precambrian. Apatity, KSС RAS, 201-203. (In Russ.)

42. Ogorodnikov V.N., Polenov Yu.A., Nedosekova I.L., Savichev A.N. (2016) Granite pegmatites carbonatites and hydrothermalites of the Uphaley metamorphic complex. Ekaterinburg, IGG UB RAS, UGGU Publ., 283 p. (In Russ.)

43. Patchett P.J., Chase C.G. (2002) Role of transform continental margins in major crustal growth episodes. Geol., 30, 39-42

44. Pearce J.A. (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

45. Pelleter E., Cheilletz A., Gasquet D., Mouttaqi A., Annich M., Hakour A.E., Deloule E., Feraud G. (2007) Hydrothermal zircons: A tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit – Morocco). Chem. Geol., 245, 135-161. https://doi.org/10.1016/j.chemgeo.2007.07.026

46. Puchkov V.N. (2010) A Geology of the Urals and the Cis-Urals (topical issues of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DizainPoligrafServis Publ., 280 p. (In Russ.)

47. Puchkov V.N. (2018) Plum-dependent granite-ryolite magmatism. Lithosphere (Russia), 18(5), 692-705. (In Russ.) DOI: 10.24930/1681-9004-2018-18-5-692-705

48. Pystin A.I., Pystina Yu.A. (2010) Granitoid complexes and geochronology of granite formation processes on the Polar Urals. Magmatism and metamorphism in the history of the Earth. Materials of the All-Russian Petrographic meeting. V. 2. Ekaterinburg, IGG UB RAS, 163-164. (In Russ.)

49. Report on the object “Geological mapping GDP-200, N-41-I (Kyshtym region)”. (2009) Chelyabinsk, Chelyabinskgeos”emka, Publ., pt. 1, 259 p. (In Russ.)

50. Rubatto D. (2002) Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chem. Geol., 184(1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2

51. Rykus M.V., Snachev V.I., Nasibullin R.A., Rykus N.G, Savel’ev D.E. (2002) Sedimentology, magmatism and ores of the northern part of the Uraltau zone. Ufa, 266 p. (In Russ.)

52. Samygin S.G., Belova A.A., Ryazantsev A.V., Fedotova A.A. (2010) Fragments of the Vendian Convergent Margin in the Southern Urals. Dokl. Akad. Nauk, 432(5), 644-649. (In Russ.)

53. Scarrow, J.H., Pease, V., Fleutelot, C., Dushin, V. (2001). The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: an extension of the Cadomian arc. Precamb. Res., 110, 255-275.

54. Shardakova G.Yu. (2015а) Composition of minerals and conditions for the formation of granitoids of the bitim complex (Nikolsky massif, Ufaley block). Ezhegodnik-2014. Proc. IGG UrO RAS, v. 162, 144-147. (In Russ.)

55. Shardakova G.Yu. (2015б) New data about Rb-Sr age of granite from Nickolsky massif (Ufaley block). Lithosphere (Russia), 4, 93-98. (In Russ.)

56. Shardakova G.Yu. (2016) Granites of the Ufaley block: geodynamic environments, age, sources, problems. Lithosphere (Russia), 4, 133-137. (In Russ.)

57. Shardakova G.Yu., Chervyakovskaya M.V. (2020) Vendian-Cambrian granites of the Ufaley block (Middle Urals): a new isotope data, source composition, potential ore content. Izvestiya Ural’skogo Gosudarstvennogo Gornogo Universiteta, 2(58), 48-63. (In Russ.) doi. org/10.21440/2307-2091-2020-2-48-63.

58. Shardakova G.Yu., Savelyev V.P. (2010) Polychronic granitoids of the Nikolsky massif as a reflection of the complex geological history of the Ufaley block. Ezhegodnik-2009. Proc. IGG UB RAS, v. 157, 93-96.

59. Shenger A.M., Natal’in BA., Burtman V.S. (1994) Tectonic evolution of the altaides. Geol. Geofiz., 35(7-8), 41-58. (In Russ.)

60. Soboleva A.A., Kuzenkov N.A, Udoratina O.V., Larionov A.N., Matukov D.I., Presnyakov S.L. (2005) The age of zircons from the granites of the kernel of the Hobiesky Granite Gneis Dome (Cispolar Urals). Origin of igneous rocks: Materials. Intern. Petrogr. Meeting. Apatity, KSC RAS, 236-238. (In Russ.)

61. Sylvester P.J. (1998) Post-collisional strongly peraluminous granites. Lithos, 45, 29-31.

62. Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in Ocean Basins. Geol. Soc. Spec. Publ. Lond., 42, 313-345.

63. Svyazhina I.A., Petrov G.A. (2011) Migration of terreins of the Ural mobile belt and Paleozoic accretionary events on the urals margin of the Eastern European paleoplatform. Lithosphere (Russia), 6, 3-13. (In Russ.)

64. Torsvik T.H., Smethurst M.A. (1999) Plate tectonic modelling: virtual reality with GMAP. Comp. Geosci., 25, 395-402.

65. Trail D., Watson E.B., Tailby N.D. (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta, 97 (1), 70-87

66. Udoratina O.V., Soboleva A.A., Kuzenkov N.A., Rodionov N.V., Presnyakov S.L. (2006) Age of Granitoids in The Man’khambo and Il’yaiz Plutons, The Northern Urals: U-Pb Data. Dokl. Earth Sci., 407(2), 284-289. DOI: 10.1134/S1028334X06020309.

67. Udoratina O.V., Kulikova K.V., Shuiskii A.S., Sobolevа A.A., Andreichev V.L., Golubeva I.I., Kapitanova V.A. (2021) Granitoid magmatism in the north of the Urals: U–Pb age, evolution, sources. Geodynam. Tektonofiz., 12(2), 287-309.

68. Wang F.Y., Liu S.A., Li S.G., Yongsheng H. (2013) Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156-159, 97-111. https://doi.org/10.1016/j.lithos.2012.10.017

69. Watson E.B. (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib. Mineral. Petrol., 70, 407-419. https://doi.org/10.1007/BF00371047

70. Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151(4), 413-433. https://doi.org/10.1007/s00410-006-0068-5

71. Whalen J.B., Currle K.L., Chappell B.W. (1979) A-type granites: Geochemical characteristics, discrimination and petrogenesis. Geol. Soc. Amer. Abstract with Programs, 539.

72. Wilson J.T. (1965) A new class of faults and their bearing on continental drift. Nature, 207, 343-347.

73. Zhong S., Feng C., Seltmann R., Li D., Qu H. (2018) Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos, 314-315, 646-657. https://doi.org/10.1016/j.lithos.2018.06.029

74. Zonenshain L.P., Kuz’min M.I., Natalov L.M. (1990) Plate tectonics ot the USSR area. Pt 2. Moscow, Nedra Publ., 334 p. (In Russ.)


Review

For citations:


Shardakova G.Yu. New data on the trace element composition and Lu-Hf isotopic system of zircons from the Early Cambrian granites of the Ufaley block (Middle Urals): a step to the correction of geodynamic concepts. LITHOSPHERE (Russia). 2022;22(1):55–74. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-1-55-74

Views: 806


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)