Lawsonite eclogites and metasomatites of the Utarbaev Association of the Maksyutov complex
https://doi.org/10.24930/1681-9004-2021-21-6-867-883
Abstract
Research subject. This article presents mineralogical, petrological and geochemical studies of lawsonite eclogites and metasomatites of the Utarbayev Аssociation of the Maksyutov complex. The Utarbayev Association forms an independent unit in the Maksyutovsky complex accretion structure. This Association features a variety of lawsonite-bearing metasomatites that form zonal halos in the frame of block-like diopside-grossular bodies included in the antigorite-serpentinite melange. The Utarbayev Association differs from typical lawsonite-blue shale complexes of collisional oro genes by the absence of mineral parageneses of lawsonite-bearing rocks of blue amphibolites.
Methods. A microprobe analysis of the mineral composition was performed using a Cameca SX-100 microanalyzer. The content of petrogenic, rare and rare-earth elements was determined by X-ray spectroscopy (CPM-18) and mass spectroscopy (ICP-MS, ELAN-90). Results. An indicator mine ral paragenesis (Grt + Omp + Lws + Di) ± (Coe-Qz + Ttn) that characterizes lawsonite eclogite was found. Omphacite (Jd38–44) and unchanged lawsonite (Н2O-OH – 11.8%, Ca/Al = 0.48–0.51 и Fe/Al = 0.01 0.02%) are represented as inclusions in grossular-almandine garnet (Alm39–46Grs41–51), coesite – as microinclusions in omphacite. Thermobarometry (Grt-Omp, Grt-Omp-Ph) showed the following formation conditions of lawsonite paragenesis: T = 495–622°C under P = 2.2–2.4 GPa. The age of crystallization of lawsonite eclogite was found to be Lower Paleozoic (471–444 Ma).
Conclusions. The lawsonite eclogite of the Utarbayev Association is similar to the complexes of «cold» eclogites, which are formed under the conditions of a very low geothermal gradient and are rarely preserved when removed into the upper crust. The latest review published in the «Journal of Metamorphic Geology» (2014) mentions 19 sites, where lawsonite eclogites were discovered on the earth’s surface. Тhe HP-UHP lawsonitebearing Utarbayev Rock Association complements this list.
Keywords
About the Authors
A. I. RusinRussian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620110
A. A. Zvorygina
Russian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620110
P. M. Valizer
Russian Federation
Miass 456317
References
1. Ballevre M., Pitra P., Bohn M. (2003) Lawsonite growth in the epidote blueschists from the Ile de Groix (Armorican Massif, France): a potential geobarometer. J. Metamorphic Geol., 21, 723-735. DOI: 10.1046/j.1525-1314.2003.00474.x
2. Bromiley G.D., Pawley A.R. (2003) The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgOAl2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability. Amer. Mineral., 88, 99-108. DOI: 10.2138/am-2003-0113
3. Brovarone V.A., Alard O., Beyssac L., Martin L., Picatto M. (2014) Lawsonite metasomatism and trace element recycling in subduction zones. J. Metamorph. Geol., 32, 489-514. DOI: 10.1111/jmg.12074
4. Brovarone V.A., Groppo C., Hetényi G., Compagnoni R., Malavieille J. (2011) Coexistence of lawsonite-bearing eclogite and blueschist: Phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. J. Metamorph. Geol., 29, 583-600. DOI: 10.1111/j.1525-1314.2011.00931.x
5. Castelli D., Rolfo F., Compagnoni R., Xu S. (1998) Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. Island Arc, 7, 159-173. DOI: 10.1046/j.1440-1738.1998.00185.x
6. Chen Y., Ye K., Wu T.F., Guo S. (2013) Exhumation of oceanic eclogites: thermodynamic constraints on pressure, temperature, bulk composition and density. J. Metamorph. Geol., 31, 549-570.
7. Clarke G.L., Powell R., Fitzherbert I.A. (2006) The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. J. Metamorph. Geol., 24, 715-725. DOI: 10.1111/j.1525-1314.2006.00664.x
8. Comodi P., Zanazzi P.F. (1996) Effects of temperature and pressure on the structure of lawsonite. Amer. Mineral., 81, 833-841.
9. Dobretsov N.L. (1974) Glaucophanschist and eclogite-glaucophanschist complexes of the USSR. Novosibirsk, Nauka Publ., 429 p. (In Russ.)
10. Dobretsov N.L. (2000) Collision processes in Paleozoic foldbelts of Asia and exhumation mechanisms. J. Petrol., 8(5), 403-427.
11. Enami M., Liou J.G., Mattinson C.G. (2004) Epidote Minerals in High P/T Metamorphic Terranes: Subduction Zone and High- to Ultrahigh-Pressure Metamorphism. Rev. Mineral. Geochem., 56, 347-398. DOI: 10.2138/gsrmg.56.1.347
12. Endo S., Wallis S.R., Tsuboi M., Torres de Leon R., Solari L.A. (2012) Metamorphic evolution of lawsonite eclogites from the southern Motagua fault zone, Guatemala. J. Metamorph. Geol., 30, 143-164. DOI:10.1111/j.1525-1314.2011.00960.x
13. Ernst W.G. (1977) Tectonics and prograde versus retrograde P-T trajectories of high-pressure metamorphic belts. Rendicont Societa Italiana di Mineralogia e Petrologia, 33(1), 191-220.
14. Groppo C., Castelli D. (2000) Prograde P-T evolution of a lawsonite eclogite from the Monsivo Meta-ophiolite (Western Alps). J. Petrol., 51(12), 2489-2504. DOI: 10.1093/petrology/egq065
15. Helmstaedt H., Doig R. (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau-samples of subducted Franciscan-type oceanic lithosphere. Phys. Chem. Earth, 9, 95-112. DOI: https://doi.org/10.29173/ikc876
16. Helmstaedt H.H., Schulze D.J. (1991) Early to Mid-Tertiary Inverted Metamorphic Gradient Under the Colorado Plateau: Evidence From Eclogite Xenoliths in Ultramafic Microbreccias, Navajo Volcanic Field. J. Geophys. Res., 96(B8), 13225-13235. DOI: 10.1029/91JB00284
17. Ivanov S., Ivanov K. (1993) Hydrodynamic zoning of the Earth’s crust and its significance. J. Geodynam., 17, 155-180.
18. Ivanov S.N., Krasnobayev A.A., Rusin A.I. (1986) Geodinamic regimes in the precambrian of the Urals. Precambr. Res., 33, 198-208.
19. Ivanov S.N., Rusin A.I. (1997) Continental rift metamorphism. Geotectonics, (1), 3-15.
20. Lennykh V.I. (1977) Eclogite-glaucophane belt of the Southern Urals. Moscow, Nauka Publ., 160 p. (In Russ.)
21. Lennykh V.I., Valizer P.M. (1999) High-pressure rocks of the Maksyutov complex (Southern Urals) 4th International Eklogite field sumposium. Novosibirsk, OIGGM SB RAS, 64.
22. Martin L.A.J., Rubatto D., Brovarone A.V., Hermann J. (2011) Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos, 125, 620-640. DOI.org/10.1016/j.lithos.2011.03.015
23. Miyashiro A. (1961) Evolution of metamorphic belts. J. Petrol., 2, 277-311.
24. Okamoto K., Maruyama S. (1999) The high-pressure synthesis of lawsonite in the MORB + H2O system. Amer. Mineral., 84, 362-373. DOI: 10.2138/am-1999-0320
25. Pawley A. (1994) The pressure and temperature stability limits of lawsonite: Implications for H2O recycling in subduction zones. Contrib. Mineral. Petrol., 1(18), 99-108. DOI:10.1007/BF00310614
26. Poli S., Schmidt M.W. (1998) The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblages. Contrib. Mineral. Petrol., 130, 162-175.
27. Ravna E.J. (2000) The garnet-chlinopyroxene geothermometer – an updated calibration. J. Metamorph. Geol., 18, 211-219.
28. Ravna E.J., Andersen B., Jolivet L., De Capitani C. (2010) Cold subduction and the formation of lawsonite eclogite – constraints from prograde evolution of eclogitized pillow lava from Corsica. J. Metamorph. Geol., 28, 381-395. DOI: 10.1111/j.1525-1314.2010.00870.x
29. Ravna E.J., Paquin J. (2003) Thermobarometric methodologies applicable to eclogites and garnet ultrabasites. EMU Notes Mineral., 5(8), 229-259.
30. Ravna E.J., Terry M.P. (2004) Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengitecoesite/quartz. J. Metamorph. Geol., 22, 579-592. DOI: 10.1111/j.1525-1314.2004.00534.x
31. Rusin A.I. (2007) High-pressure metamorphism of the Urals. Geodynamics, magmatism, metamorphism and ore formation. Ekaterinburg, IGG UrO RAN, 421-460. (In Russ.)
32. Rusin A.I., Valizer P.M., Rusin I.A. (2014) HP-UHP associations of the continental rift and collision stages of the Urals formation. Geological processes in environments of subduction, collision and sliding of lithosphe ric plates). Vladivostok, Dalʼnauka Publ., 246-249. (In Russ.)
33. Schmidt M.W. (1995) Lawsonite: Upper pressure stability and formation of higher density hydrous phases. Amer. Mineral., 80, 1286-292.
34. Schmidt M.W., Poli S. (1994) The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth Planet. Sci. Lett., 124, 105-118.
35. Song S., Niu Y., Zhang L., Wei C., Liou J.G., Su L. (2009) Tectonic evolution of early Paleozoic Hp Metamorphic rocks in the north Qilian Mountains. J. Asian Earth Sci., 35, 334-353. DOI: 10.1016/j.jseaes.2008.11.005
36. Sun S.-S., McDonough R.L. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ., 42, 313-345. DOI: 10.1144/GSL.SP.1989.042.01.19
37. Teilor S.R., Mak-Lennan S.M. (1988) Continental crust: its composition and evolution. Moscow, Mir Publ., 379 p. (In Russ.)
38. Tsujimori T., Ernst W.G. (2014) Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. J. Metamorph. Geol., 32, 437-454. DOI: 10.1111/jmg.12057
39. Tsujimori T., Sisson V.B., Liou J.G., Harlow G.E., Sorensen S.S. (2006a) Petrologic characterization of Guatemalan lawsonite eclogite: Eclogitization of subducted oceanic crust in a cold subduction zone. Petrol. Soc. Amer., Spec. Pap., 403, 14-168. DOI: 10.1130/2006.2403(09)
40. Tsujimori T., Sisson V.B., Liou J.G., Harlow G.E., Sorensen S.S. (2006b). Very low-temperature record in subduction process: A review of worldwide lawsonite eclogites. Lithos, 92, 609-624. DOI: 10.1016/j.lithos.2006.03.054
41. Usui T., Nakamura E., Helmstaedt H. (2006) Petrology and Geochemistry of Eclogite Xenoliths from the Colorado Plateau: Implications for the Evolution of Subducted Oceanic Crust. J. Petrol., 47(5), 929-964. DOI: 10.1093/petrology/egi101
42. Valizer P.M., Krasnobaev A.A., Rusin A.I. (2013) Jadeite-grossular eclogite of the Maksyutov complex (South Urals). Lithosphere (Russia), (4), 52-64. (In Russ.)
43. Valizer P.M., Krasnobaev A.A., Rusin A.I. (2011) Ultrahigh-pressure (UHP) associations in ultramafites of the Maksutov Complex (Southern Urals). Dokl. Earth Sci., 441(2), 1645-1648. DOI: 10.1134/S1028334X11120087
44. Valizer P.M., Krasnobaev A.A., Rusin A.I., Zvorygina A.A. (2015) Garnet-glaucophane schists of the Tashlinsky block of the Maksyutov complex. Lithosphere (Russia), (5), 51-70. (In Russ.)
45. Valizer P.M., Lennykh V.I. (1988) Amphiboles of blue schists of the Urals. Moscow, Nedra Publ., 203 p. (In Russ.)
46. Valizer P.М., Rusin A.I., Krasnobaev A.A., Likhanov I.I. (2013) Garnet-pyroxene and lawsonite-bearing rocks of the Maksyutov Complex (Southern Urals). Russ. Geol. Geophys., 54(11), 1369-1384.
47. Wei C.J., Clarke G.L. (2011) Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. J. Metamorph. Geol., 29, 939-952.
48. Whitney D.U., Evans B.W. (2010) Abbreviations for names of rock-forming minerals. Amer. Mineral., 95, 185-187.
49. Zack T., Rivers T., Brumm R., Kronz A. (2004) Cold subduction of oceanic crust: Implications from a lawsonite eclogite from the Dominican Republic. Eur. J. Mineral., 16, 909-916. DOI: 10.1127/0935-1221/2004/0016-0909
50. Zhang J., Meng F. (2006) Lawsonite-bearing eclogites in the north Qilian and north North Altyn Tagh. Chin. Sci. Bull., 51(10), 1238-1244. DOI: 10.1007/s11434-006-1238-6
Review
For citations:
Rusin A.I., Zvorygina A.A., Valizer P.M. Lawsonite eclogites and metasomatites of the Utarbaev Association of the Maksyutov complex. LITHOSPHERE (Russia). 2021;21(6):867-883. (In Russ.) https://doi.org/10.24930/1681-9004-2021-21-6-867-883