Determination of Sm/Nd and Sr isotopic composition using an ICP-MS Neptune Plus equipped with an NWR 213 attachment for laser ablation
https://doi.org/10.24930/1681-9004-2021-21-5-712-723
Abstract
Research subject. The Sm/Nd isotope system was investigated using inter-laboratory natural samples of apatite, titanite, allanite, monazite, as well as intra-laboratory samples of apatite (from carbonatites, Ilmenogorsk massif, Ural), monazite (from pegmatites of the Aduy granite massif and its framing, Middle Urals) and titanite (from calcite veins, Saranov skoye chromite deposit, Middle Urals and from alkaline pegmatite, Shpat mine, Vishnevy mountains, South Urals). The Sr isotope system was investigated using inter-laboratory natural apatite samples and intra-laboratory apatite samples (from the apatite-carbonate vein, Slyudyanogorskoe deposit, Irkutsk region and from carbonatites, Ilmenogorsk massif, Ural).
Methods. The research was carried using a Neptune Plus multicollector mass spectrometer with inductively coupled plasma (ThermoFisher) equipped with an NWR 213 (ESI) laser ablation attachment, located in a room of ISO class 7 at the “Geoanalyst” Center for Collective Use (IGG Ural Branch of the Russian Academy of Sciences, Ekaterinburg). Results. The article describes methodological approaches for studying Sm/Nd and Sr isotope systems in natural phosphate and silicate minerals by inductively coupled plasma mass spectrometry with laser ablation, implemented on the equipment of the Center for Collective Use “Geoanalyst” (IGG Ural Branch of the Russian Academy of Sciences, Ekaterinburg). A comparative analysis of the obtained results with those reported in literature showed their satisfactory agreement. The developed analytical approaches were used to study apatite samples (analysis of the Sr isotope system) and those of apatite, monazite, titanite (analysis of the Sr isotope system). Conclusions. The developed approaches to the analysis of Sm/Nd and Sr isotopic systems can be recommended for investigating such minerals, as apatite, titanite, allanite, monazite (analysis of the Sm/Nd isotope system); apatite (analysis of the Sr isotope system). The achieved analysis errors allow the results to be used for interpreting various geochemical processes.
About the Authors
M. V. ChervyakovskayaRussian Federation
15 Akad. Vonsovskogo st., Ekaterinburg 620110
V. S. Chervyakovskiy
Russian Federation
15 Akad. Vonsovskogo st., Ekaterinburg 620110
References
1. Belousova E.A., Grifn W.L., OʼReilly S., Fisher N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J. Geochem. Explor., 76, 45-69. doi: 10.1016/S0375-6742(02)00204-2
2. Berglun M., Wieser M.E. (2011) Isotopic compositions of the elements 2009 (IUPAC technical report). Pure Appl. Chem., 83(2), 397-410. doi: 10.1351/PAC-REP-10-06-02
3. Charlier B.L.A., Ginibre C., Morgan D., Nowell G.M., Pearson D.G., Davidson J.P., Otley C.J. (2006) Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem. Geol., 232, 114-133. doi: 10.1016/j.chemgeo.2006.02.015
4. Christensen J.N., Halliday A.N., Lee D.C., Hall C.M. (1995) In situ Sr isotopic analysis by laser ablation. Earth Planet. Sci. Lett., 136, 79-85. doi: 10.1016/0012-821X(95)00181-6
5. Chu M.F., Wang K.L., Grifn W.L., Chung S.L., OʼReilly S.Y., Pearson N.J., Iizuka Y. (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. J. Petrol., 50, 1829-1855. doi: 10.1093/petrology/egp054
6. De Paolo D.J. (1981) Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth Planet. Sci. Lett., 53, 189-202. doi:10.1016/0012-821X(81)90153-9
7. Dubois J.C., Retali G., Cesario J. (1992) Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. Intern. J. Mass Spectrom., Ion Proc., 129, 163-177.
8. Fisher C.M., McFarlane C.R.M., Hanchar J.M., Schmitz M.D., Sylvester P.J., Lam R., Longerich H.P. (2011) Sm-Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: methods and potential natural and synthetic reference materials. Chem. Geol., 284, 1-20. doi: 10.1016/j.chemgeo.2011.01.012
9. For G. (1989) Fundamentals of isotope geology. Moscow, Mir Publ., 590 p. (In Russ.)
10. Foster G.L., Vance D. (2006) In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS. J. Anal. Atomic Spectrom., 21, 288-296. doi: 10.1039/B513945G
11. Horstwood M.S.A., Evans J.A., Montgomery J. (2008) Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochim. Cosmochim. Acta., 72, 5659-5674. doi: 10.1016/j.gca.2008.08.016
12. Isnard H., Brennetot R., Caussignac C., Caussignac N., Chartier F. (2005) Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC ICPMS. Int. J. Mass Spectrom., 246, 66-73. doi: 10.1016/j.ijms.2005.08.008
13. Jacobsen S.B., Wasserburg G.J. (1984) Sm-Nd isotopic evolution of chondrites and achondrites. Earth Planet. Sci. Lett., 67(2), 137-150. doi: 10.1016/0012-821X(80)90125-9
14. Kalinin P.V., Ronenson B.M. (1957) Geological and structural features and genesis of the Slyudyanskiy phlogopite deposits. Sovet. Geol., 58, 56-73. (In Russ.)
15. Levin V.Ya., Ronenson B.M., Samkov V.S. (1997) Alkaline-carbonatite complexes of the Urals. Ekaterinburg, Uralgeolkom Publ., 274 p. (In Russ.)
16. Lugmair G.W., Carlson R.W. (1978) The Sm-Nd history of KREEP. Lunar Planet. Sci. Conf. Proc., 1, 689-704.
17. McFarlane C.R.M., McCulloch M.T. (2007) Coupling of in-situ Sm-Nd systematics and U-Pb dating of monazite and allanite with applications to crustal evolution studies. Chem. Geol., 245, 45-60. doi: 10.1016/j.chemgeo.2007.07.020
18. McFarlane C.R.M., McCulloch M.T. (2008) Sm-Nd and Sr isotope systematics in LREE-rich accessory minerals using LA-MC-ICP-MS. Laser-Ablation ICPMS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course, Series 40, 117-133.
19. Munoz P.M., Alves A., Guitarrari Azzone1 R., Cordenons P., Morano S., Sproesser W., Souza S. (2016) In situ Sr isotope analyses by LA-MC-ICP-MS of igneous apatite and plagioclase from magmatic rocks at the CPGeoUSP. Braz. J. Geol., 46(1), 227-243. doi: 10.1590/2317-488920160032093
20. Pan Y., Fleet M.E. (2002) Compositions of the ApatiteGroup Minerals: Substitution Mechanisms and Controlling Factors. Rev. Miner. Geochem., 48(1), 13-49. doi:10.2138/rmg.2002.48.2
21. Poitrasson F., Hanchar J.M., Schaltegger U. (2002) The current state and future of accessory mineral research. Chem. Geol., 191, 3-24. doi: 10.1016/S0009-2541(02)00146-8
22. Rakovan J., McDaniel D.K., Reeder R. (1997) Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal Sm-Nd age. Earth Planet. Sci. Lett., 146, 329-336. doi: 10.1016/S0012-821X(96)00226-9
23. Steiger R.H., Jäger E. (1977) Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology. Earth Planet. Sci. Lett., 36, 359-362.
24. Vroon P.Z., van der Wagt B., Koornneef J.M., Davies G.R. (2008) Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS. Anal. Bioanal. Chem., 390, 465-476. doi: 10.1007/s00216-007-1742-9
25. Wasserburg G.J., Jacobsen S.B., DePaolo D.J., McCulloch M.T., Wen T. (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta, 45, 2311-2324. doi:10.1016/0016-7037(81)90085-5
26. Yang Y.H., Sun J.F., Xie L.W., Fan H.R., Wu F.Y. (2008) In situ Nd isotopic measurement of natural geologic materials by LA-MC-ICPMS. Chin. Sci. Bull., 53, 1062-1070. doi: 10.1007/s11434-008-0166-z
27. Yang Y.H., Wu F.Y., Wilde S.A., Lui X.M., Zhang Y.B., Xie L.W., Yang J.H. (2009) In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol., 264, 24-42. doi: 10.1016/j.chemgeo.2009.02.011
28. Yang Yue-Heng, Wu Fu-Yuan, Yang Jin-Hui, Chew David M., Xie Lie-Wen, Chu Zhu-Yin, Zhang Yan-Bin, Huang Chao. (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem. Geol., 385, 35-55. doi: 10.1016/j.chemgeo.2014.07.012
29. Zaitsev A., Bell K. (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phosphorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contrib. Mineral. Petrol., 121, 324-335. doi: 10.1007/BF02688247
Review
For citations:
Chervyakovskaya M.V., Chervyakovskiy V.S. Determination of Sm/Nd and Sr isotopic composition using an ICP-MS Neptune Plus equipped with an NWR 213 attachment for laser ablation. LITHOSPHERE (Russia). 2021;21(5):712-723. (In Russ.) https://doi.org/10.24930/1681-9004-2021-21-5-712-723