Сlassification and characteristic of inclusions in the Severny Kolchim meteorite (H3.4)
https://doi.org/10.24930/1681-9004-2021-21-3-409-430
Abstract
Research subject. Fragments of the Severny Kolchim meteorite.
Materials and methods. The study was performed in the Geoanalyst Centre for Collective Use, Institute of Geology and Geochemistry, UB RAS. The clast and inclusions were studied using a scanning electron microscope JSM-6390LV from JEOL with an energy dispersing attachment INCA Energy 450 X-Max 80. The bulk chondrule compositions were obtained by EDS analysis of whole chondrule areas in thin sections. The composition of minerals was studied using an electron microprobe analyser Cameca SX100 equipped with five wavelength spectrometers. The concentrations of trace elements in olivine were measured using a mass spectrometer with inductively coupled plasma NexION 300S (PerkinElmer) with a laser ablation attachment NWR 213 (ESI) at a crater diameter of 25 microns.
Results. According to the revealed set of petrographic and mineralogical features, the meteorite was clarified as H3.4. In addition, this meteorite can be further classified as genomict breccia. In the Severny Kolchim meteorite, a 6×6 mm clast fragment composed of chondrite H3.9 was studied. This inclusion has a slightly higher degree of S2 shock transformations compared to the host rock. Refractory forsterite-rich objects were found and studied. These inclusions are composed of low-ferroan forsterite (f = 0.004–0.2, f – ratio Fe/(Fe + Mg)mol).
Conclusion. The porphyry olivine chondrules consisting of refractory forsterite and high-calcium glass in mesostasis are likely to be parental to the refractory forsterite-rich inclusions. Al-rich chondrules and pyroxene chondrule with tridymite identified in the matrix of the chondrite are likely to be xenogenic, originating from the formation area of enstatite chondrites.
Keywords
About the Authors
S. V. BerzinRussian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
K. A. Dugushkina
Russian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
M. V. Chervyakovskaya
Russian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
V. S. Chervyakovskiy
Russian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
E. A. Pankrushina
Russian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
E. V. Burlakov
Russian Federation
15 Acad. Vonsovsky st., Ekaterinburg, 620016 Russia
References
1. Afiattalab F., Wasson J.T. (1980) Composition of the metal phases in ordinary chondrites: implications regarding classification and metamorphism. Geochim. Cosmochim. Acta, 44(3), 431-446.
2. Akaki T., Nakamura K., Noguchi R., Tsuchiyama A. (2007) Multiple formation of chondrules in the early solar system: Chronology of a compound Al-rich chondrule. As trophys. J., 656, 29-32.
3. Berzin S.V. (2018a) Features of the refractory forsterite-rich objects in the unequilibrated оrdinary chondrite Severny Kolchim (H3). Mineraly: stroenie, svoistva, metody issledovaniya, (9), 24-25. (In Russian)
4. Berzin S.V. (2018б) Refractory forsterite-rich objects in the meteorite Severny Kolchim (H3). Meteor. Planet. Sci., 53(S1). 81st Annual Meeting of the Meteoritical Society No. 6019.
5. Berzin S.V., Ivanov K.S., Burlakov E.V. (2019) Finding of refractory inclusions in the Severny Kolchim meteorite (H3). Dokl. Akad. Nauk, 487(2), 908-910. (In Russian)
6. Bischoff A. (2000) Mineralogical characterization of primitive, type-3 lithologies in Rumuruti chondrites. Meteoritics Planet. Sci., 35, 699-706.
7. Bischoff A., Keil K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta, 48, 693-709.
8. Bischoff A., Scott E.R.D., Metzler K., Goodrich C.A. (2006) Nature and origins of meteoritic breccias. Meteorites and the Early Solar System II. Tucson, University of Arizona Press, 679-710.
9. Borisov A., Pack A., Kropf A., Palme H. (2008) Partitioning of Na between olivine and melt: An experimental study with application to the formation of meteoritic Na2Orich chondrule glass and refractory forsterite grains. Geochim. Cosmochim. Acta, 72, 5558–5573.
10. Brigham C.A., Yabuki H., Ouyang Z., Murrell M.T., El Goresy A., Burnett D.S. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochim. Cosmochim. Acta, 50, 1655-1666.
11. Chondrules: Records of Protoplanetary Disk Processes (2018). (Ed. by S. Russell, H. Connolly Jr., A. Krot). Cambridge, Cambridge University Press, 450 p. doi:10.1017/9781108284073
12. Dodd R.T., Schmus W.R.V., Koffman D.M. (1967). A survey of the unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 31(6), 921-934.
13. Dugushkina K.A., Berzin S.V. (2019) New carbonaceous chondrite Northwest Africa 11781 (CM2). Litofhera, 19(4), 580-587. DOI: 10.24930/1681-9004-2019-19-4-580-587 (In Russian)
14. Ebert S., Bischoff A. (2016) Genetic relationship between Na-rich chondrules and Ca, Al-rich inclusions? Formation of Na-rich chondrules by melting of refractory and volatile precursors in the Solar Nebula. Geochim. Cosmochim. Acta, 177, 182-204.
15. Erokhin Y.V., Berzin S.V., Khiller V.V., Ivanov K.S. (2016) Рentlandite from ordinary chondrites of the Urals. Litosfera, (3), 139-146. (In Russian)
16. Erokhin Y.V., Koroteev V.A., Khiller V.V., Ivanov K.S., Kleimenov D.A. (2018) The Severny Kolchim meteorite: new data on mineralogy. Dokl. Akad. Nauk, 482(1), 1189-1192. (In Russian)
17. Erokhin Y.V., Koroteev V.A., Khiller V.V., Ivanov K.S., Zakharov A.V. (2019) Material composition of the Severnyi Kolchim meteorite. Vestn. Perm. un-ta. Geologiya, 18(3), 194-204. (In Russian)
18. Fuchs L.H., Olsen E., Jensen K.J. (1973) Mineralogy, mineral chemistry and composition of the Murchison (CM2) meteorite. Contrib. Earth Sci., (10), 1-39.
19. Gucsik A., Endo T., Nishido H., Ninagawa K., Kayama M., Berczi S., Nagy S., Abraham P., Kimura Y., Miura H., Gyollai I., Simonia I., Rozsa P., Posta J., Apai D., Miha- lyi K., Nagy M., Ott U. (2013) Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body. Meteor. Planet. Sci., 48(12), 2577-2596.
20. Huss G.R., Rubin A.E., Grossman J.N. (2006) Thermal metamorphism in chondrites. Meteorites and the Early Solar System II. Tucson, University of Arizona Press, 567-586.
21. Ivanov O.K. (1969) Chondrite Severnyi Kolchim. Meteoritika, 29, 48-56. (In Russian)
22. Kimura M., Weisberg M.K., Lin Y., Suzuki A., Ohtani E., Okazaki R. (2005) Thermal history of enstatite chondrites from silica polymorphs. Meteor. Planet. Sci., (40), 855-868.
23. Krot A.N., Hutcheon I.D., Keil K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium- aluminum-rich inclusions and ferromagnesian chondrules. Meteor. Planet. Sci., 37, 155-182.
24. Krot A.N., Keil K. (2002) Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteor. Planet. Sci., 37, 91-111.
25. Krot A.N., Nagashima K., Libourel G., Miller K.E. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk. Evidence from precursors of chondrules and igneous Ca, Al-rich inclusions. Chondrules. Records of Protoplanetary Disk Processes. Cambridge, Cambridge University Press, 11-56.
26. Krot A.N., Petaev M.I., Keil K. (2006) Mineralogy and petrology of Al-rich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite North West Africa 739. Chemie der Erde, 66, 57-76.
27. Lange D.E., Keil K., Gomes C.B. (1979) The Mafra meteorite and its lithic clasts: A genomict L-group chondrite breccia (abstract). Meteoritics, 14, 472-473.
28. Leshin L.A., Rubin A.E., McKeegan K.D. (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta, 61(4), 835-845.
29. Lin C.C. (2004) Pressure-induced polymorphism in enstatite (MgSiO3) at room temperature: clinoenstatite and orthoenstatite. Phys. Chem. Solids, 65, 913-921.
30. Lipschutz M.E., Wolf S.F., Gartenhaus S., Lindstrom M.M., Mittlefehldt D.W., Zolensky M.E., Wacker J.F., Benoit P.H., Sears D.W.G., Dodd R.T. (1992) Noblesville meteorite breccia: recovery and initial characterization. XXIII Lunar and Planetary Science Conference. Houston, Lunar and Planetary Institute, 785-786.
31. Loginov V.N. (2004) Meteorites of The Urals. Ekaterinburg, Ural State University Publ., 80 p. (In Russian)
32. Macpherson G.J., Huss G.R. (2005) Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim. Cosmochim. Acta, 69(12), 3099-3127.
33. McSween H.Y.Jr. (1977) On the nature and origin of isolated olivine grains in carbonaceous chondrites. Geochim. Cosmochim. Acta, (41), 411-418.
34. Meteoritical Bulletin, No. 36-48 (1970). Meteoritics, (5), 85-109.
35. Nazarov M.A., Barsukova L.D., Kharitonova V.Ya., Ul’yanov A.A., Shevaleevsky I.D. (1983) Mineralogy, petrography and chemical composition of the Severnyi Kolchim meteorite. Meteoritika, 42, 40-48. (In Russian)
36. Olsen E., Grossman L. (1978) On the origin of isolated olivine grains in Type 3 carbonaceous chondrites. Earth Planet. Sci. Lett., 41, 111-127.
37. Pack A., Palme H., Shelley J.M.G. (2005) Origin of chondritic forsterite grains. Geochim. Cosmochim. Acta, 69, 3159-3182.
38. Pack A., Yurimoto H., Palme H. (2004) Petrographic and oxygen-isotopic study of refractory forsterites from Rchondrite Dar al Gani 013 (R3.5-6), unequilibrated ordinary and carbonaceous chondrites. Geochim. Cosmochim. Acta, 68(5), 1135-1157.
39. Reid A.M., Bass M.N., Fujita H., Kerridge J.F., Frederiksson K. (1970) Olivine and pyroxene in the Orgueil meteorite. Geochim. Cosmochim. Acta, 34, 1253-1255.
40. Roedder E. (1981) Significance of Ca-Al-rich silicate melt inclusions in olivine crystals from the Murchison type II carbonaceous chondrite. Bull. Minéralogie, 104, 339-353.
41. Rout S.S., Keil K., Bischoff A. (2010) Bulk chemical compositions of Al-rich objects from Rumuruti (R) chondrites: Implications for their origin. Chemie der Erde, 70, 35-53.
42. Rout S.S., Bischoff A. (2008) Ca, Al-rich inclusions in Rumuruti (R) chondrites. Meteor. Planet. Sci., 43(9), 1439-1464.
43. Russell S.S., MacPherson G.J., Leshin L.A., McKeegan K.D. (2000) 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet. Sci. Lett., 184, 57-74.
44. Scott E.R.D., Krot A.N. (2014) Chondrites and Their Components. Treatise on geochemistry. 2nd ed. V. 1. Meteorites and cosmochemical processes. L., Elsevier Ltd., 65-137.
45. Sears D.W.G., Grossman J.N., Melcher C.L., Ross L.M., Mills A.A. (1980) Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature, 287, 791-795.
46. Shchapova Yu.V., Votyakov S.L., Zamyatin D.A., Chervyakovskaya M.V., Pankrushina E.A. (2020) Mineral concentrators of d- and f-elements: local spectroscopic and LA-ICP-MS studies of the composition, structure and properties, geochronological applications. Novosibirsk, SB RAS Publ., 424 p. (In Russian)
47. Sheng Y.J., Hutcheon I.D., Wasserburg G.J. (1991) Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta, 55, 581-599.
48. Steele I.M., Smith J.V., Skirius C. (1985) Cathodoluminescence zoning and minor elements in forsterites from the Murchison (CM2) carbonaceous chondrite. Nature, 313, 294-297.
49. Steele I.M. (1986) Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 50, 1379-1395.
50. Stoffler D., Hamann C., Metzler K. Addendum to “Stoffler D., Hamann C., and Metzler K. (2019) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science 53, 5–49, 2018”. Meteor. Planet. Sci., 54(4), 946-949.
51. Stoffler D., Keil K., Scott E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 3845-3867.
52. Wasson J.T., Kallemeyn G.W. (1988) Composition of Chondrites. Philos. Transact. Royal Soc. Lond., 325(1587), 535-544.
53. Weisberg M.K., Kimura M. (2012) The unequilibrated enstatite chondrites. Chemie der Erde, 72, 101-115.
54. Wlotzka F.A (1993) Weathering scale for the ordinary chondrites. Meteoritics, 28(3), 460-460.
55. Yudin I.A. (1970) To the Mineralogy of the Severny Kolchim meteorite. Tr. IGG UFAN SSSR, 86, 157-161. (In Russian)
56. Zhang A.-C., Itoh S., Sakamoto N., Wang R.-C., Yurimoto H. (2014) Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim. Cosmochim. Acta, 130, 78-92.
57. Zhang M., Lin Y., Tang G., Liu Y., Leya I. (2019) Origin of Al-rich chondrules in CV chondrites: Incorporation of diverse refractory components into the ferromagnesian chondrule forming region. Geochim. Cosmochim. Acta, 272, 198-217.
58. Zolensky M.E., Mittlefehldt D.W., Lipschutz M.E., Wang M.-S., Clayton R.N., Mayeda T.K., Grady M.M., Pillinger C., Barber D. (1997) CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochim. Cosmochim. Acta, 61, 5099-5115.
59. Zolensky M.E., Tonui E.K., Bevan A.W.R., Le L., Clayton R.N., Mayeda T.K., Norman M. (2004) Camel Donga 040: A CV chondrite genomict breccia with unequilibrated and metamorphosed material. Antarct. Meteor. Res., 28, 95-96.
Review
For citations:
Berzin S.V., Dugushkina K.A., Chervyakovskaya M.V., Chervyakovskiy V.S., Pankrushina E.A., Burlakov E.V. Сlassification and characteristic of inclusions in the Severny Kolchim meteorite (H3.4). LITHOSPHERE (Russia). 2021;21(3):409-430. (In Russ.) https://doi.org/10.24930/1681-9004-2021-21-3-409-430