Enstatite nodules in the harzburgites of the Southern Urals
https://doi.org/10.24930/1681-9004-2021-21-3-386-408
Abstract
Research subject. At two points on the northern shore of Lake Uvil’dy in the Southern Urals, two outcrops of unique rocks – nodular harzburgites – were discovered in the tectonic lenses of serpentinite melange among garnet-biotite gneisses of the Ilmenogorsko-Vishnevogorsky Сomplex. These outcrops form a body of about 9 m in thickness among amphibolized orthopyroxenites.
Results. The fine-grained serpentinized enstatite-olivine matrix of the harzburgites under study contains numerous spherical formations (nodules) 2–7 cm in diameter, composed of large enstatite crystals and rare forsterite grains. The composition and structure of these spheroids are highly similar to the enstatite chondrules from stony meteorites, although differing in size (ten times larger).
Conclusions. Such structures are very rare in hyperbasites and occur in slightly altered varieties. Judging by the microstructural features and relationships of the main minerals, it is concluded that these minerals were crystallized from a magmatic melt.
About the Author
V. G. KorinevskyRussian Federation
Miass, Chelyabinsk oblast 456317 Russia
References
1. Arai S., Kida M. (2000) Origin of fine-grained peridotite xenoliths from Iraya volcano of Batan island, Philippines: deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? The Island Arc, (9), 458-471.
2. Belyi V.F., Gelman M.L. (1983) Ultrabasic igneous rocks in the southwestern part of the Koryak Upland. Mantle xenoliths and the problem of ultramafic magmas. Novosibirsk, Nauka Publ., 138-149. (In Russian)
3. Berzin S.V., Erokhin Yu.V., Ivanov K.S., Khiller V.V. (2013) Features of the mineral and geochemical composition of the “Chelyabinsk” meteorite. Lithosfera, (3), 106-117. (In Russian)
4. Bowen N.L. (1928) The evolution of the igneous rocks. Princeton. N. Y., Princeton University Press, 332 p.
5. Bowen N.L., Tuttle O.F. (1949) MgO–SiO2–H2O. Geol. Soc. Amer. Bull., 60, 439-460.
6. Brueckner H.K., Medaris L.G. (2000) A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultrahigh-pressure metamorphic terranes. J. Metamorph. Geol., 18, 123-133.
7. Chondrules: Records of Protoplanetary Disk Processes (2019). Ed. by S.S. Russell, H.C. Connolly Jr., A.N. Krot. Cambridge, Cambridge University Press, 450 p.
8. Erokhin Yu.V., Koroteev V.A., Khiller V.V., Ivanov K.S., Zakharov A.V. (2019) The substance composition of the Severnyi Kolchim meteorite. Perm University Bull. Geol., 18(3), 194-204. (In Russian)
9. Fabries J. (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib. Miner. Petrol., 69(4), 329-336. DOI: 10.1007/BF00372258
10. Fershtater G.B., Pushkarev E.V. (1991) Dunite-clinopyroxenite- gabbro formation of the Khabarny massif. Petrology of postharzburgite intrusions of the Kempirsai-Khabarnyi ophiolite association (South Urals). Sverdlovsk, UrO AN SSSR Publ., 81-160. (In Russian)
11. Fershtater G.B., Pushkarev E.V. (1992) A new type of platinoid mineralization in the ophiolites of the Urals. Ezhegodnik- 1991. Ekaterinburg, IGiG UrO RAN Publ., 117-120. (In Russian)
12. Gornova M.A. (2011) Geochemistry and petrology of suprasubduction peridotites. Abstract of dissertation for the degree of Doctor of Geological and Mineralogical Sciences. Irkutsk, In-te Geochemistry SO RAN Publ., 42 p. (In Russian)
13. Hammarström J.M., Zen E-A. (1986) Aluminium in hornblende: an empirical igneous geobarometer. Amer. Miner., 71(11/12), 1297-1313.
14. Hatch F.N., Wells A.K., Wells M.K. (1972) Petrology of the igneous rocks. L., Thomas Murby & Co, 512 p.
15. Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. (2012) Nomenclature of the amphibole supergroup. Amer. Miner., 97, 2031-2048.
16. Igneous rocks. Ed. by O.A. Bogatikov. V. 1. Classification, nomenclature, petrography (1983). Moscow, Nauka Publ., 367 p. (In Russian)
17. Igneous rocks. Ed. by O.A. Bogatikov. V. 5. Ultrabasic rocks (1988). Moscow, Nauka Publ., 508 p. (In Russian)
18. Johnson K.I., Brady J.B., MacFalane W.A., Thomas R.B., Poulsen C.J., Sincock M.J. (2004) Precambrian meta-ultramafic rocks from the Tobacco Root Mountains, Montana. Spec. Pap. 377. Geol. Soc. Amer., Montana, Boulder, Colorado, 71-87.
19. Korinevsky V.G., Korinevsky E.V. (2006) The new in geology, petrography and mineralogy of the Ilmeny Mountains. Miass, IMin UrO RAN Publ., 102 p. (In Russian)
20. Korinevsky V.G., Korinevsky E.V. (2014) Fragments of rocks of the bottom of earth’s crust in the structure of the Ilmeno-Vishnevogorsky complex. Ural. Geol. Zhurn., (1), 68-72. (In Russian)
21. Korinevsky V.G., Korinevsky E.V., Kotlyarov V.A., Lebedeva S.M., Blinov I.A., Mironov A.B., Shtenberg M.V. (2017) Sapphirine-spinel hornblendites of the Ilmeno-Vishnevogorsky complex. Lithosfera, (1), 68-95. (In Russian)
22. Korinevsky V.G., Kotlyarov V.A., Korinevsky E.V., Mironov A.B., Shtenberg M.V. (2016) Magnesiohögbomite (Mg,Fe2+,Zn)8(Al,Ti,Fe3+)20O38(OH)2 from the Ilmeno- Vishnevogorsky complex. Mineralogiya, (2), 20-33. (In Russian)
23. Lapin B.N. (2005) Atlas of structures of ultrabasic rocks of the Urals. Novosibirsk, GEO Publ., 184 p. (In Russian)
24. Levin B.Yu. (1965) The origin of meteorites. Uspekhi Fizicheskoi Nauki, 86(1), 41-67. (In Russian)
25. Locock A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comp. Geosci., 62, 1-11.
26. Marakushev A.A. (1994) The position of platinum metals in the system of extreme states of elements and the formation types of their deposits. Platinum of Russia. Moscow, Geoinformmark Publ., 206-229. (In Russian)
27. Mueller R.F., Saxena S.K. (1977) Chemical petrology. Springer-Verlag. N.Y.; Heidelberg; Berlin, 394 p.
28. Paktunç A.D. (1984) Metamorphism of the ultramafic rocks of the Thompson mine, Thompson nikel belt, Northern Manitoba. Canad. Miner., 22, 77-91.
29. Pavlov N.V., Grigorieva I.I., Grishina N.V. (1979) Formation and genetic types of chromite deposits in geosynclinal regions. Formation conditions for magmatic ore deposits. Moscow, Nauka Publ., 65-79. (In Russian)
30. Petrographic dictionary (1981). Ed. by V.P. Petrov. Moscow, Nedra Publ., 496 p. (In Russian)
31. Popov V.A. (1984) Applied crystallomorphology of minerals. Sverdlovsk, UNTs AN SSSR Publ., 191 p. (in Russian)
32. Pushkarev E.V. (1998) Depleted lherzolites of the Khabarninsky massif in the Southern Urals. Ezhegodnik-1997 IGG UrO RAN. Yekaterinburg, UrO RAN Publ., 109-111. (In Russian)
33. Reverdatto V.V., Selyatitskii A.Yu., Remizov D.N., Khlestov V.V. (2005) Geochemical differences between “mantle” and “crustal” peridotites and high / ultrahigh pressure pyroxenites. Dokl. RAN, 400(1), 93-97. (In Russian)
34. Ringwood A.E. (1975) Composition and petrology of the Earth’s mantle. N. Y., McGraw-Hill, 618 р.
35. Roduit N. (2014) JMicroVision, Image analysis toolbox for measuring and quantifying components of high-definition images. Version 2.7. URL: http//www.jmicrovision.com.
36. Ryazantsev A.V., Razumovskii A.A., Kuznetsov N.B., Kalinina E.A., Dubinina S.V., Aristov V.A. (2007) Geodynamic nature of serpentinite melange in the Southern Urals. Byull. MOIP, Geol., 82(1), 32-47. (In Russian)
37. Saranchina G.M., Shinkarev N.F. (1967) Petrography of igneous and metamorphic rocks. L., Nedra Publ., 324 p. (In Russian)
38. Schmidt M.W. (1991) Experimental calibration of the Al-inhornblende geobarometer at 650 °C, 3.5–13.0 kbar. Terra Abstr., 3(1), 30.
39. Sharma M., Wasserburg G.J., Papanastassiou D.F.A., Quick J.E., Sharkov E.V., Laz’ko E.E. (1995) High 143Nd / 144Nd in extremely depleted mantle rocks. Earth Planet. Sci. Lett., 135, 101-114.
40. Sharygin V.V., Kolisnichenko S.V. (2017) Yaratkulova – new H-chondrite in the Urals: mineralogical data. Mineralogiya, (1), 1-15. (In Russian)
41. Snachev V.I., Savel’iev D.E., Rykus M.V. (2001) Petrogeochemical features of rocks and ores of gabbro-hyperbasite massifs of Kraka. Ufa, DesignPress Publ., 212 p. (In Russian)
42. Spadea P., Zanetti A., Vannucci R. (2003) Mineral chemistry of ultramafic massifs in the Southern Uralides orogenic belt (Russia) and the petrogenesis of the Lower Palaeozoic ophiolites of the Uralian Ocean. Ophiol. Earth Hist. Spec. Publ. 218. Lond., Geol. Soc., 567-596.
43. Sun S.S. (1982) Chemical composition and origin of the Earth’s primitive mantle. Geochim. Cosmochim. Acta, 46, 179-192.
44. Trommsdorff V., López Sánchez-Vizcaino V., Cómez-Pugnaire M.T., Müntener O. (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spaine. Contrib. Mineral. Petrol., 132, 139-148.
45. Varlakov A.S. (1978) Petrography, petrochemistry and geochemistry of hyperbasites of the Orenburg Urals. Moscow, Nauka Publ., 239 p. (In Russian)
46. Varlakov A.S. (1999) Serpentines of ultrabasic rocks of the Urals. Ural. Mineral. Sbornik No. 9. Miass, IMin UrO RAN Publ., 78-101. (In Russian)
47. Varlakov A.S., Kuznetsov G.P., Korablev G.G., Murkin V.P. (1998) Hyperbasites of the Vishnevogorsk-Ilmenogorsky metamorphic complex (South Urals). Miass, UrO RAN Publ., 195 p. (In Russian)
48. Wager L.P., Brown G.M. (1968) Layered igneous rocks. Edinburg; L., Oliver & Boyd, 588 p.
49. Whitney D.L., Evans B.W. (2010) Abbreviations for names of rock-forming minerals. Amer. Miner., 95, 185-187.
50. Wolff R.A. (1978) Ultramafic lenses in the Middle Ordovician Partridge formation, Bronson Hill anticlinorium, Central Massachusetts. Contribution no. 34. Department of Geology and Geography, University of Massachusetts, Amherst, Massachusetts, 165 p.
51. Zavaritsky A.N. (1956) Eruptive rocks. Moscow, AN SSSR Publ., 479 p. (In Russian)
Review
For citations:
Korinevsky V.G. Enstatite nodules in the harzburgites of the Southern Urals. LITHOSPHERE (Russia). 2021;21(3):386-408. (In Russ.) https://doi.org/10.24930/1681-9004-2021-21-3-386-408