U-Pb (ID-TIMS) geochronological method and “in-situ” SIMS zircon dating: possibilities and constrains
https://doi.org/10.24930/1681-9004-2020-20-3-411-431
Abstract
Research subject and methods. The work is based on a comparative study of the data obtained by the authors and those published in literature on U-Pb ID-TIMS and “in-situ” isotopic examination of zircons extracted from a number of Ural geological objects (volcanogenic rocks of the Mashak Formation of the Bashkir Meganticlinorium, granitoid massifs of the Northern part of the Uraltau Ridge, Kumba gabbro-norite massif Platinum-bearing belt), as well as Australian diorites and South African mafic xenoliths.
Results. Since the methods of ID-TIMS (ID-MC-ICP/MS) and SIMS dating of zircon are fundamentally different, their advantages and disadvantages should be taken into account when solving the corresponding geochronological problems.
Conclusions. U-Pb ID-TIMS (ID-MC-ICP/MS) methods allow the analysis of individual crystals, as well as their fragments, with an unprecedented level of uncertainty concerning age dating (up to 0.05%). The main drawback of the U-Pb SIMS method consists in a significant error when dating U-Pb (2–5%), which might disguise possible Pb losses (and / or U-contribution) and lead to appearance of artifacts when interpreting U-Pb zircon data. This, in turn, leads to the identification of non-existent stages of magmatism, metamorphism, false ideas about the length of evolutionary processes, etc. The use of U-Pb SIMS methods should be limited to solving geological problems that do not require a high accuracy of dating (i.e., allowing rough estimation) but involving the need to study a large number of samples and corresponding zircon grains. Such problems arise during examination of clastic material in the process of reconstructing sources and geological conditions of sedimentary basin formation. U-Pb SIMS methods can be used for studying the heterogeneity of zircon crystals having a complex structure under preliminary selection of materials for subsequent high-precision dating using U-Pb ID-TIMS and / or ID-MC-ICP/MS methods. The expansion of the number of laboratories using these high-precision methods seems to be the most important direction in the development of Russian isotope geochronology.
About the Authors
Yu. L. RonkinRussian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620016, Russia
A. V. Maslov
Russian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620016, Russia
S. Sindern
Germany
Aachen 52062, Germany
References
1. Alekseev A.A. (1984) Rifeisko-vendskii magmatizm zapadnogo sklona Yuzhnogo urala [Riphean-Vendian magmatism of the western slope of the Southern Urals]. Moscow, Nauka Publ., 136 p. (In Russian)
2. Alekseev A.A. (1976) Magmaticheskie kompleksy khrebta ural-Tau [Magmatic complexes of the Ural-Tau Range]. Moscow, Nauka Publ., 170 p. (In Russian)
3. Andersen C.A., Hinthorne J.R. (1972) U, Th, Pb and REE abundances and 207Pb/206Pb ages of individual minerals in returned lunar material by ion microprobe mass analysis. Earth Planet. Sci. Lett., 14, 195-200.
4. Black L.P., Kamo S.L., Allen S.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. (2003a) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol., 200(1-2), 155-170.
5. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol., 205, 115-140.
6. Black L.P., Kamo S.L., Williams I.S., Mundil R., Davis D.W., Korsch R.J., Foudoulis C. (2003б) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem. Geol., 200(1-2), 171-188.
7. Boekhout F., Spikings R., Sempere T., Chiaradia M., Ulianov A., Schaltegger U. (2012) Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal. Lithos., 146–147, 48-64.
8. Bogatyreva G.I., Kozlov V.I. (1972) Petrographic and petrochemical characteristics of the intrusive rocks of the anticlinorium Ural-Tau in the Tyrlyansky region of the Southern Urals. Materialy po geologii i poleznym iskopaemym Yuzhnogo urala [Materials on Geology and minerals of the Southern Urals]. V. 5. Ufa, Bash. Knizhn. Izdat. Publ., 76-86. (In Russian)
9. Boltwood B.B. (1907) On the ultimate disintegration products of the radioactive elements. Pt II. The disintegration products of uranium. Amer. J. Sci., 23, 77-88.
10. Bosch D., Bruguier O., Efimov A., Krasnobaev A. (2006) A Middle Silurian age for the Uralian Platinum-bearing Belt (Central Urals, Russia): U-Pb zircon evidence and geodynamic implication. Geol. Soc. London. Mem., 32, 443-448.
11. Bowring S.A., Schmitz M.D. (2003) High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record. Zircon. Rev. Miner., 53, 305-326.
12. Bowring S.A., Schoene B., Crowley J.L., Ramezani J., Condon D.C. (2006) High-precision U-Pb zircon geochronology and the stratigraphic record: progress and promise. Geochronology: Emerging Opportunities, Paleontological Society Short Course, 12. Philadelphia, PA, The Paleontol. Soc., 25-45.
13. Bowring S.A., Williams I.S. (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, 3-16.
14. Claoue-Long J.C., Zhang Z.C., Ma G.G., and Du Sl. (1991) The age of the Permian-Triassic boundary. Earth Planet. Sci. Lett., 105, 182-190.
15. Compston W. (1999) Geological age by instrumental analysis: the 29th Hallimond Lecture. Miner. Mag., 63, 297-311.
16. Condon D.J., Schoene B., McLean N.M., Bowring S.A., Parrish R. (2015) Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration. Pt. I). Geochim. Cosmochim. Acta, 164, 464-480.
17. Davis D.W., Poulsen K.H., Kamo S.L. (1989) New insights into Archean crustal development from geochronology in the Rainy Lake area, Superior Province, Canada. J. Geol., 97, 379-398.
18. Davis D.W., Williams I.S., Krogh T.E. (2003) Historical development of zircon geochronology. Zircon. Rev. Miner., 53, 145-181.
19. Dunphy J.M., Fletcher I.R., Cassidy K.F., Champion D.C. (2003) Compilation of SHRIMP U-Pb geochronological data, Yilgarn Craton, Western Australia, 2001-2002. Geosci. Australia, 15, 139 p.
20. Efimov A.A., Efimova L.P., Maegov V.I. (1993) Tectonics of the Urals Platinum Belt: the ratio of real complexes and the mechanism of structure formation. Geotektonika, 3, 34-46. (In Russian)
21. Efimov A.A., Ronkin Yu.L., Lepikhina O.P. (2010) Granitoid magmatism and water metamorphism in the history of the Ural Platinum Belt: Sm-Nd (ID-TIMS) isotopic limitations. Dokl. Akad. Nauk, 435(6), 770-775. (In Russian)
22. Efimov A.A., Ronkin Yu.L., Sindern S., Kramm U., Lepikhina O.P., Popova O.Yu. (2005) U-Pb data on zircons of plagiogranites of the Kytlym massif: isotopic age of later events in the history of the Ural Platinum Belt. Dokl. Akad. Nauk, 403(4), 512-516. (In Russian)
23. Einsele G. (1992) Sedimentary basins. Evolution, facies and sediment budget. Berlin, Springer, 628 p.
24. Ernst R.E., Wingate M.T.D., Buchan K.L., Li Z.X. (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Prec. Res., 160, 159-178.
25. Fershtater G.B., Pushkarev E.V. (1992) Igneous clinopyroxenites of the Urals and their evolution Izv. Akad. Nauk. Ser. Geol., 4, 74-84. (In Russian)
26. Garris M.A. (1961) Geochronology of igneous and metamorphic rocks of the Southern Urals and Mugodzhar according to the potassium-argon method. Materaly po geologii i poleznym iskopaemym urala [Materials on geology and minerals of the Urals]. Iss. 8. M.: Gosgeoltekhizdat Publ., 127-135. (In Russian)
27. Goodge J.W., Myrow P., Williams I.S., Bowring S.A. (2002) Age and provenance of the Beardmore Group, Antarctica: Constraints on Rodinia supercontinent breakup. J. Geol., 110, 393-406.
28. Gorozhanin V.M. (1995) Rb-Sr metod v reshenii problem geologii Yuzhnogo urala. Avtoref. dis. kand. geol.-min. nauk [Rb-Sr method in solving the problems of geology of the Southern Urals. Kand. geol. and min. sci. diss.]. Ekaterinburg, IGG UB of RAS, 23 p. (In Russian)
29. Ireland T.R. (1995) Ion microprobe mass spectrometry: Techniques and applications in cosmochemistry, geochemistry, and geochronology. Advances in Analytical Geochemistry, 2, 1-118.
30. Ireland T.R., Flöttmann T., Fanning C.M., Gibson G.M., Preiss W.V. (1998) Development of the lower-Paleozoic Pacific margin of Gondwana from zircon-age structure across the Delamerian orogen. Geology, 26, 243-246.
31. Ireland T.R., Williams I.S. (2003) Considerations in Zircon Geochronology by SIMS. Zircon. Rev. Miner., 53, 215-241.
32. Ireland T.R., Wlotzka F. (1992) The oldest zircons in the solar system. Earth Planet. Sci. Lett., 109, 1-10.
33. Ivanov O.K., Kaleganov B.A. (1993) New data on the age of concentric-zonal dunite-pyroxenite massifs of the Ural platinum-bearing belt. Dokl. Akad. Nauk, 328(6), 720-724. (In Russian)
34. Ivanov S.N., Puchkov V.N., Ivanov K.S., Samarkin G.I., Semenov I.V., Pumpyansky A.I., Dymkin A.M., Poltavets Yu.A., Rusin A.I., Krasnobaev A.A. (1986) Formirovanie zemnoi kory urala [Formation of the crust of the Urals]. Moscow, Nauka Publ., 248 p. (In Russian)
35. Jackson S., Pearson N., Griffin W., Belousova E. (2004) The application of laser ablation inductively coupled plasmamass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol., 211, 47-69.
36. Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M. (1971) Precision measurementof half-lives and specific activities of 235U and 238U. Phys. Rev. C, 4(5), 1889-1906.
37. Keeley J.A., Link P.K., Fanning C.M., Schmitz M.D. (2012) Preto synglacial rift-related volcanism in the Neoproterozoic (Cryogenian) Pocatello Formation, SE Idaho: New SHRIMP and CA-ID-TIMS constraints. Lithosphere, 5(1), 128-150.
38. Keevil N.B. (1939) The calculation of geologic age. Amer. J. Sci., 237, 195-214.
39. Kennedy A.K., Wotzlaw J.F., Crowley, J., Schmitz M., Schaltegger U. (2014) Eocene reference material for microanalysis of U-Th-Pb isotopes and trace elements. Can. Mineral., 52, 409-421.
40. Kosler J., Sylvester P.J. (2003) Present trends and the future of zircon in geochronology: laser ablation ICP/MS. Zircon. Rev. Miner., 53, 244-275.
41. Kozlov V.I., Krasnobaev A.A., Larionov N.N., Maslov A.V., Sergeeva N.D., Bibikova E.V., Genina L.A., Ronkin Yu.L. (1989) Nizhnii rifei Yuzhnogo urala [Lower Riphean of the Southern Urals]. Moscow, Nauka Publ., 208 p. (In Russian)
42. Krasnobaev A.A., Bibikova E.V., Stepanov A.I., Kirnozova T.I., Ronkin Yu.L., Makarov V.A., Lepikhina O.P., Kravtsov A.V. (1985) Age of effusive mashak retinue and the problem of the isotope-geochronological boundary of the lower-middle Rifean. Isotopnoe datirovanie protsessov vulkanizma i sedimentatsii [Isotopic dating of processes of volcanism and sedimentation]. Moscow, Nauka Publ., 162-175. (In Russian)
43. Krasnobaev A.A., Kozlov V.I., Puchkov V.N. et al. (2008) Mashaksky volcanism: Situation 2008. Strukturno-veshchestvennye kompleksy i problemy geodinamiki dokembriya fanerozoiskikh orogenov. Materialy III Chtenii pamyati S.N. Ivanova [Structural-material complexes and geodynamic problems of the Precambrian Phanerozoic orogens. Materials III Readings memory S.N. Ivanov). Ekaterinburg, IGG UB of RAS, 61-63. (In Russian)
44. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Busharina S.V. (2013) Zircon geochronology of Mashak volcanic rocks and the age of the border of the lower-middle Riphean (South Ural). Stratigr. Geol. Korrel., 21(5), 3-20. (In Russian)
45. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Larionov. A.N., Nekhorosheva A.G., Berezhnaya N.G. (2007) Polygenous polychronic zirconology and the age problem of the Barangulov gabbro-granite complex. Dokl. Akad. Nauk, 416(2), 241-246. (In Russian)
46. Krogh T.E. (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim. Cosmochim. Acta, 46, 637-649.
47. Krogh T.E., Davis G.L. (1975) Alteration in zircons and differential dissolution of altered and metamict zircon. Year Book 74. Carnegie Institution. Washington, 619-623.
48. Lee J.K.W., Williams I.S., Ellis D.J. (1997) Pb, U and Th diffusion in natural zircon. Nature, 390, 159-162.
49. Mattinson J.M. (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multistep partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol., 220, 47-66.
50. Makeev A.F., Levsky L.K. (2006) Opportunities and limitations of ion microprobes for measuring lead and uranium. Izotopnoe datirovanie protsessov rudoobrazovaniya, magmatizma, osadkootlozheniya i metamorfizma. Materialy III Vserossiiskoi konferentsii po izotopnoi geokhronologii. [Isotopic dating of the processes of ore formation magmatism, sedimentation and metamorphism. Materials of the III Russian conference on isotope geochronology]. V. 2. Moscow, GEOS Publ., 12-15. (In Russian)
51. Malich K.N., Efimov A.A., Ronkin Yu.L. (2009) The Archean U-Pb-isotope age of the Nizhny Tagil massif (Ural Platinumbearing Belt). Dokl. Akad Nauk, 427(1), 101-105. (In Russian)
52. Maslov A.V. (1994) Osadochnye kompleksy v razreze riftogennykh struktur [Sedimentary complexes in sections of rift structures]. Ekaterinburg, IGG UB of RAS, 176 p. (In Russian)
53. Maslov A.V., Ronkin Yu.L. (2008) On some new data on the age of magmatic formations in a typical Riphean section. Geologiya, poleznye iskopaemye i problem geoekologii Bashkortostana, urala i prilegayushchikh territorii. Materialy VII Mezhregional’noi geologicheskoi konferentsii [Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories. Materials VII interregional geological conference]. Ufa, DesignPoligraphService Publ., 120-122. (In Russian)
54. Meyer C., Williams I.S., Compston W. (1996) Uranium-lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteor. Planet. Sci., 31, 370-387.
55. Moser D.E., Davis W.J., Reddy S.M., Flemming R.L., Hart R.J. (2009) Zircon U–Pb strain chronometry reveals deep impact-triggered flow. Earth Planet. Sci. Lett., 277(1-2), 73-79.
56. Mundil R., Metcalfe I., Ludwig K.R., Ronne P.R., Oberli F., Nicoll R.S. (2001) Timing of the Permian-Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations). Earth Planet. Sci. Lett., 187, 131-145.
57. Osadochnye basseiny: Metody izucheniya, struknura i evolutsiya [Sedimentary basins: methods of study, structure and evolution. (Ed. Yu.G. Leonov, Yu.A. Volozh). (2004) Moscow, Nauchnyi Mir Publ., 526 p. (In Russian)
58. Ovchinnikova G.V., Kuznetsova A.B., Vasil’eva I.M. Gorokhov I.M. Krupenin M.T., Gorokhovskii B.M., Maslov A.V. (2013) Pb-Pb-age and Sr-isotopic characteristics of mid-Riphean phosphorite nodules: the ZigazinoKomarovskaya Formation of the Southern Urals. Dokl. Akad. Nauk, 451(4), 430-434. (In Russian)
59. Paces J.B., Miller J.D. (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota – geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res., 98(B8), 13997-14013.
60. Parnachev V.P. (1988) Magmatism and Sedimentation in the Late Pre-Cambrian History of the Southern Urals. dis. Dr. geol. and min. sci. diss. Sverdlovsk, IGG, Ural Branch of Akad Nauk USSR, 33 p. (In Russian)
61. Parnachev V.P., Rotar’ A.F., Rotar’ Z.M. (1986) srednerifeiskie vulkanogenno-osadochnye assotsiatsii Bashkirskogo megantiklinoriya (Yuzhnyi ural) [Middle Riphean volcanogenic-sedimentary association of the Bashkir meganticlinorium (South Ural)]. Sverdlovsk, USC, Acad. Nauk SSSR, 104 p. (In Russian)
62. Puchkov V.N., Bogdanova S.V., Ernst R.E., Kozlov V.I., Krasnobaev A.A., Söderlund U., Wingate M.T.D. (2013) The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos, 174, 109-124.
63. Puchkov V.N., Krasnobaev A.A., Kozlov V.I., Matukov D.I., Nekhorosheva A.G., Lepikhina E.N., Sergeev S.A. (2007) Preliminary data on the age of neo- and mesoproterozoic of the Southern Urals in the light of new U-Pb datings. Geol. sbornik № 6 IG uNTS RAN, Ufa, DesignPoligraphService Publ., 3. (In Russian)
64. Puchkov V.N., Krasnobaev A.A., Schmitz M., Kozlov V.I., Davydov V.I., Lepekhina E.N., Nekhorosheva A.G. (2009) New U-Pb dating of the Mashak suite volcanic rocks of the Riphean of the Southern Urals and their comparative assessment. Geol. sbornik № 8 IG uNTS RAN, Ufa, DesignPoligraphService Publ., 3-14. (In Russian)
65. Ronkin Yu.L., Efimov A.A., Lepikhina O.P. (2009) Artifacts from U-Pb SIMS zircon dating. Arbitration comparison with precision U-Pb ID-TIMS and data from other isotopic systems. Ezhegodnik-2008. Ekaterinburg, IGG UrO RAN, 337-343. (In Russian)
66. Ronkin Yu.L., Ivanov K.S., Shmelev V.R., Lepikhina O.P. (2003) Sm-Nd isotopic dating of gabbro-norite of the Kumba massif: Platinonosnyi poyas urala. Izotopnaya geokhronologiya v reshenii problem geodinamiki i rudogeneza. Materialy II Vserossiiskoi konferentsii po geokhronologii [The platinum-bearing belt of the Urals. Isotope geochronology in solving problems of geodynamics and ore genesis. Mat-ly II Russian Conf. on geochronology]. St.Peterburg, IGGD RAS, 424-427. (In Russian)
67. Ronkin Yu.L., Maslov A.V., Kazak A.P., Matukov D.I., Lepikhina O.P. (2007) The boundary of the lower and middle Riphean in the Southern Urals: new U-Pb isotope SHRIMP-II restrictions. Dokl. Akad. Nauk, 415(3), 370-378. (In Russian)
68. Ronkin Yu.L., Maslov A.V., Matukov D.I., Lepikhina O.P., Popov O.Yu. (2005) “Mashak rift event” of the Riphean typical region (Southern Urals): new isotopic-geochronological framework. Struktura, geodinamika i mineragenicheskie protsessy v litosfere. Tr. XI Mezhdunar. konf. [Structure, geodynamics and mineragenic processes in the lithosphere. Proceedings of the XI International Conference]. Syktyvkar, Geoprint Publ., 305-307. (In Russian)
69. Ronkin Yu.L., Sinddern S., Maslov A.V., Matukov D.I., Kramm U., Lepikhina O.P. (2007) The oldest (3.5 billion years) zircons of the Urals: U-Pb (SHRIMP-II) and TDM restrictions. Dokl. Akad. Nauk, 415(5), 651-657. (In Russian)
70. Ronkin Yu.L., Tikhomirova M., Maslov A.V. (2016) ~1380 Ma The Southern Urals LIP: Precision U-Pb ID-TIMS Restrictions. Dokl. Akad. Nauk, 468(6), 674-679. (In Russian)
71. Rykus M.V., Snachev V.I., Nasibullin R.A. Rykus N.G., Savel’ev D.E. (2002) Osadkonakoplenie, magmatizm i rudonosnost’ severnoi chasti zony uraltau [Sedimentation, magmatism and ore content of the northern part of the Uraltau zone]. Ufa, BSU Publ., 268 p. (In Russian)
72. Schaltegger U.A., Schmitt K., Horstwood M.S.A. (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP/MS: Recipes, interpretations, and opportunities. Chem. Geol., 402, 89-110.
73. Schmitz M.D., Kuiper K.F. (2013) High-precision geochronology. Elements, 9(1), 25-30.
74. Schoene B. (2014) 4.10 U-Th-Pb Geochronology. Treatise on Geochemistry. 2nd ed. Oxford, Elsevier, 341-378.
75. Schoene B., Crowley J., Condon D., Schmitz M., Bowring S. (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim. Cosmochim. Acta, 70, 426-445.
76. Semikhatov M.A. (2000) Refinement of estimates of the isotopic age of the lower boundaries of Upper Riphean, Vendian, Upper Vendian, and Cambrian. Dopolneniya k stratigraficheskomu kodeksu Rossii [Additions to the stratigraphic code of Russia). St.Peterburg, VSEGEI, 95-107. (In Russian)
77. Semikhatov M.A., Shurkin K.A., Aksenov E.M., Bekker Yu.R., Bibikova E.V., Duk V.L., Esipchuk K.E., Karsakov L.P., Kiselev V.V., Kozlov V.I., Lobach-Zhuchenko S.B., Negrutsa V.Z., Robonen V.I., Sezko A.I., Filatova L.I., Khomentovsky V.V., Shemyakin V.M., Schuldiner V.I. (1991) New Precambrian stratigraphic scale of the USSR. Izv. AN SSSR. Ser. geol., 8, 3-14. (In Russian)
78. Sircombe K.N. (1997) Detrital mineral SHRIMP geochronology and provenance analysis of sediments in Eastern Australia. PhD dissertation. Australian National University. Canberra, 312 р.
79. Sircombe K.N. (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment. Geol., 124, 47-67.
80. Schoene B., Crowley J., Condon D., Schmitz M., Bowring S. (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim. Cosmochim. Acta, 70, 426-445.
81. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse, M.J. (2008) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol., 249, 1-35. Stratigraficheskie skhemy urala (dokemrii, paleozoi) [Stratigraphic schemes of the Urals (Precambrian, Paleozoic)]. (1993) Ekaterinburg, Roskomnedra, IGG UB RAS, 151 p. (In Russian)
82. Tilton G.R., Patterson C.C., Brown H., Inghram M., Hayden R., Hess D., Larsen Jr. E. (1955) Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geol. Soc. Amer. Bull., 66, 1131-1148.
83. Vasil’eva I.M., Ovchinnikova G.V., Kuznetsov A.B., Gorokhov I.M., Krupenin M.T., Maslov A.V., Gorokhovsky B.M. (2009) Pb-Pb age of Middle Riphean phosphorite nodules (Zigazino-Komarov Formation of the Southern Urals). Izotopnye sistemy i vremya geologicheskikh protsessov. Materialy IV Vseros. Konf. po izotopnoi geokhronologii. T. I [Isotopic systems and time geological processes. Materials IV Ross. conf. on isotopic geochronology. Vol. I]. St.Peterburg, IP Katalkina Publ., 99-101. (In Russian)
84. Wiedenbeck M., Allé P., Corfu F., GriffinW., Meier M., Oberli F., von Quadt A., Roddick J.C., Spiegel W. (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslett., 19, 1-23.
85. Wilde S.A., Valley J.W., Peck W.H., Graham C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175-178.
86. Williams I.S. (1998) U-Th-Pb geochronology by ion microprobe. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Eds M.A. McKibben, W.C. Shanks III, W.I. Ridley. Rev. Econ. Geol., 7, 1-35.
Review
For citations:
Ronkin Yu.L., Maslov A.V., Sindern S. U-Pb (ID-TIMS) geochronological method and “in-situ” SIMS zircon dating: possibilities and constrains. LITHOSPHERE (Russia). 2020;20(3):411-431. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-3-411-431