Preview

LITHOSPHERE (Russia)

Advanced search

Formation conditions, composition and ore-forming sources of the Bolshoy Karan gold-porphyry deposit (the Southern Urals)

https://doi.org/10.24930/1681-9004-2020-20-3-397-410

Abstract

Research subject. We studied PT conditions, composition and sources of ore-forming fluids of the Bolshoy Karan goldporphyry deposit (South Urals) confined to the Main Urals Fault zone at Southern Urals.

Methods. Temperatures of ore mineral formation, salt composition and fluid salinity were estimated using a Linkam TMS-600 cryostage equipped with an Olympus BX 51 optical microscope. The gas composition of fluid inclusions was determined using a Horiba LabRam HR800 Evolution Raman spectrometer and an Olympus BX-FM optical microscope. Trace elements were detected by means of LA-ICP-MS analysis. С and О isotopic composition was identified using a MAT 253 (Thermo Fisher Scientific) mass-spectrometer. S in the minerals of sulphide-carbonate-quartz ores was identified using a DeltaPLUS Advantage mass-spectrometer.

Results. It is shown that the fluid inclusions in quartz are homogenized at 370–310ºC, while those of the latest calcite – at 234–200ºС. The fluids contain Mg-Na chloride solutions with a salinity of 3.0–11.9 wt % NaClэкв. According to LA-ICP-MS data, quartz contains high Al contents (916–1556 ppm) confirming its formation from a high aluminous acid fluid. The REE distribution spectra in calcite are characterized by the accumulation of light lanthanides (LaN/YbN = 3.4–9.11) pointing to the acid fluid composition, as well as by negative Ce (0.58–0.88) and positive Eu (1.51–3.61) anomalies. The negative Ce anomaly may have been caused by interactions between the fluid and host limestones. The positive Eu anomaly reflects the existence of a middle-temperature environment (>250ºC) prior to  calcite crystallization. Y/Ho values in calcite (29.3–35.6) suggest the presence of magmatic components and those extracted from limestones. The values of δ18О in calcite vary from 14.7 to 19.8‰, while those of δ13С – from –4.1 to 0.7‰. The values of δ18ОH2O for the ore-forming fluid, which were  calculated based on average homogenization temperatures of fluid inclusions in calcite (230ºС), vary from 6.5 to 11.5‰, while δ13ССO2 – from –3.21 to 1.6‰. δ34S values in pyrite ranged from –0.60 to – 1.50‰.

Conclusions. Our data confirm the formation of the gold-porphyry mineralization of the Bolshoy Karan deposit under mesothermal conditions. Magmatic fluids played the key ore-formation role. The  geochemical peculiarities of interactions between the fluid and host rocks were revealed.

About the Authors

S. E. Znamensky
Institute of Geology uFSC RAS
Russian Federation
16/2 K. Marks st., ufa 450077, Russia



N. N. Ankusheva
Institute of Mineralogy Su FRC MG uB RAS, South-urals State university, Miass department
Russian Federation

1 Ilmensky Reserve, Miass 456317, Russia

10 8 Yulya st., Miass 456304, Russia



D. A. Artemyev
Institute of Mineralogy Su FRC MG uB RAS, South-urals State university, Miass department
Russian Federation

1 Ilmensky Reserve, Miass 456317, Russia

10 8 Yulya st., Miass 456304, Russia



References

1. Bau M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of oxidation state of europium. Chem. Geol., 93, 219-230.

2. Bau M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, 323-333.

3. Bau M., Möller P. (1992) Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineral. Petrol., 45, 231-246.

4. Bodnar R.J., Vityk M.O. (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Fluid inclusions in minerals: methods and applications. Pontignana-Siena, Virginia Polytechnic Institute and State University, 117-130.

5. Bowers T.S. (1991) The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures. Geochim. Cosmochim. Acta, 55, 2417-2434.

6. Burke E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139-158.

7. Castorina F., Masi U. (2008) REE and Nd-isotope evidence for the origin siderite from the Jebel Awam deposit (Central Morocco). Ore Geol. Rev., 34, 337-342.

8. Davis D.W., Lowenstein T.K., Spenser R.J. (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and CaCl2-NaCl-H2O. Geochim. Cosmochim. Acta, 54(3), 591-601.

9. Grabezhev A.I. (2014) Ubilee Cu-Au porphyry deposit (South Ural, Russia): SHRIMP-II U-PB-age of zircon and isotope-geochemical features of ore-bearing granitoids. Dokl. Akad. Nauk, 454(3), 315-318. (In Russian)

10. Grabezhev A.I., Belgorodskiy Ye.A. (1992) Produktivnye granitoidy i metasomatity medno-porfirovykh mestorozhdenii [Productive granitoids and metasomatites of porphyry copper deposits]. Ekaterinburg, Nauka, Ural. otdel. Publ., 199 p. (In Russian)

11. Grabezhev A.I., Sazonov V.N., Murzin V.V., Moloshag V.P., Sotnikov V.I., Kuznetsov N.S., Puzhakov B.A., Pokrovskii B.G.(2000) Bereznyakovskoye gold deposit (South Ural, Russia). Geol. Rudn. Mestorozhd., 42(1), 38-52. (In Russian)

12. Isaev V.A. (2006) Structural impurities in quartz. Part I. Review and analysis of traditional methods of cleaning quartz from structural impurities. Gornyi informatsionno-analiticheskii byulleten’, (9), 11-23. (In Russian)

13. Keller J., Hoefs J. (1995) Carbonatite volcanism: Oldoynio Lengai and the petrogenesis of natrocarbonatites. Berlin, Springer, 123 p.

14. Klein E.L., Harris С., Renac C., Giret A., Moura C.A.V., Fuzikawa K. (2006) Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil. Miner. Depos., 41, 160-178.

15. Kosarev A.M., Puchkov V.N., Ronkin Yu.L., Seravkin I.B., Kholodnov V.V., Grabezhev A.I. (2014) New data on the age and geodynamic position of porphyry-copper manifestations of the zone of the Main Ural Fault in the Southern Urals]. Dokl. Akad. Nauk, 459(1), 62-66. (In Russian)

16. Mansurov R.Kh. (2016) The structure of the mineralized zones of the Petropavlovsk porphyry gold deposit (Polar Urals)]. Vestnik Permskogo universiteta. Geologiya, 33(4), 49-69. (In Russian)

17. McDonough W.F., Sun S. (1995) The composition of the Earth. Chem. Geol., 120, 223-253.

18. Ohmoto H., Goldhaber M.B. (1997) Sulfur and carbon isotopes. Geochem. hydrotherm. Ore Dep. J. Wiley and Sons, 517-611.

19. Ohmoto H., Rye R.O. (1979) Isotopes of sulfur and carbon. Geochemistry of hydrothermal ore deposits. N. Y., Wiley, 509-567.

20. Plotinskaya O.Yu., Grabezhev A.I., Tessalina S., Seltmann R., Groznova E.O., Abramov S.S. (2017) Porphyry deposits of the Urals: Geological framework and metallogeny. Ore Geol. Rev., 85, 153-173.

21. Prokofiev V.Yu., Afanasieva Z.B., Ivanova G.F., Boiron M.C., Marignac Ch. (1994) Study of fluid inclusions in minerals of the Olympiandinskoe Au-(Sb-W) deposit (Yenisey Ridge). Geokhimiya, (7), 1012-1029. (In Russian)

22. Rollinson H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. London, Longman Scientific and Technical, 352 p.

23. Rusk B.G. (2012) Сathodoluminescent textures and trace elements in hydrothermal quartz. Quartz: Deposits, Mineralogy and Analytics. N. Y., Springer, 360 p.

24. Rusk B.G., Lowers H.A., Reed M.H. (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36 (7), 547-550.

25. Rusk B.G., Reed M.H., Dilles J., Kent A. (2006) Intensity of quartz cathodoluminescence and trace content of quartz from the porphyry copper deposit in Butte, Montana. Amer. Miner., 91, 1300-1312.

26. Schwim G., Markl G. (2005) REE systimatics in hydrothermal fluorite. Chem. Geol., 216, 225-248.

27. Shishakov V.B., Sergeyeva N.Ye., Surin S.V. (1988) Voznesenskoe porphyry copper deposit in the Southern Urals]. Geol. Rrudn. Mestorozhd., (2), 85-90. (In Russian)

28. Sillitoe R.H. (2010)Porphyry Copper Systems. Econ. Geol. 105, 3-41.

29. Spenser R.J., Moller N., Weare J.N. (1990) The prediction of mineral solubilities in mineral waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4 system at temperatures below 25ºC. Geochim. Cosmochim. Acta, 54(3), 575-590.

30. Velivetskaya T.A., Ignatiev A.V., Gorbarenko S.A. (2009) Carbon and oxygen isotope microanalysis of carbonate. Rapid Commun. Mass Spectrom, 23, 2391-2397.

31. Zamyatina D.A., Murzin V.V. (2019) Tamunier gold deposit in the Northern Urals: Physical and chemical conditions of formation, sources of ore substance and fluid, genesis. Litosfera, (1), 139-147. (In Russian)

32. Zheng Y.-F. (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J., 33, 109-126. Znamenskii S.E., Ankusheva N.N., Velivetskaya T.A., Shanina S.N. (2017) Composition and sources of mineral-forming fluids of the Orlovka orogenic gold deposit (Southern Urals). Russ. Geol. Geophys., 58, 1070-1080.

33. Znamenskiy S.Ye., Kholodnov V.V. (2018) Petrologo-geochemical features of ore-bearing effusive and intrusive rocks of the Nikolaevskiy porphyry-type gold deposit (Southern Urals). Litosfera, 18(4), 607-620. (In Russian)

34. Znamenskiy S.Ye., Kosarev A.M., Znamenskaya N.M., Timofeyev S.P., Shafigullina G.T. (2017) Structural control and geochemistry of the Great Karan porphyry deposits dykes (Southern Urals). Geologiya. Izvestiya Otdeleniya nauk o Zemle i prirodnykh resursakh AN RB, 24, 39-46. (In Russian)

35. Znamenskiy S.Ye., Michurin S.V., Ankusheva N.N. (2013) The origin of ore-forming fluids of the Orlovskoe gold deposit (Southern Urals). Rudy i metally, (4), 52-60. (In Russian)


Review

For citations:


Znamensky S.E., Ankusheva N.N., Artemyev D.A. Formation conditions, composition and ore-forming sources of the Bolshoy Karan gold-porphyry deposit (the Southern Urals). LITHOSPHERE (Russia). 2020;20(3):397-410. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-3-397-410

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)