Preview

LITHOSPHERE (Russia)

Advanced search

Provenance reconstructions. Article 4. Modern methods for investigating detrital minerals (zircon, apatite)

https://doi.org/10.24930/1681-9004-2020-20-3-363-385

Abstract

Research subject. This article aims to review modern methods for investigating detrital zircons and apatites used as mineral indicators of the composition and age of distributive provinces.

Materials and methods. Data on the U-Pb-isotopic age and composition of detrital zircons isolated from Riphean and Vendian sandstones, as well as from the lower Triassic of the Southern Urals, was analysed. In addition, numerous examples and data from published sources were studied.

Conclusions. A review of the main methods used for investigating the minerals in question was conducted. It is shown that the reconstruction of the composition of source rocks should be carried out using data on both detrital apatites and zircons. In addition, the petrogenetic signs of various detrital minerals and information about their ages have a high potential for accurate diagnosis of sources rocks.

About the Authors

L. V. Badida
A.N. Zavaritsky Institute of Geology and Geochemistry, urals Branch of RAS
Russian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620016, Russia


A. V. Maslov
A.N. Zavaritsky Institute of Geology and Geochemistry, urals Branch of RAS, Institute of Geology, ufimian Federal Research Centre of RAS
Russian Federation

15 Akad. Vonsovsky st., Ekaterinburg 620016, Russia

16/2 K. Marx st., ufa 450077, Russia



G. A. Mizens
A.N. Zavaritsky Institute of Geology and Geochemistry, urals Branch of RAS
Russian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620016, Russia


References

1. Abdullin F., Solé J., Solari L., Shchepetilnikova V., Meneses-Rocha J.J., Pavlinova N., Rodríguez-Trejo A. (2016) Single-grain apatite geochemistry of Permian-Triassic granitoids and Mesozoic and Eocene sandstones from Chiapas, southeast Mexico: implications for sediment provenance. Int. Geol. Rev., 58(9), 1132-1157. DOI: https://doi.org/10.1080/00206814.2016.1150212

2. Ahrens L.H., Cherry R.D., Erlank A.J. (1967) Observation on the Th-U relationship in zircons from granitic rocks and from kimberlites. Geochim. Cosmochim. Acta, 31(12), 2379-2387. DOI: https://doi.org/10.1016/0016-7037(67)90009-9

3. Andersen T. (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216(3-4), 249-270. DOI: https://doi.org/10.1016/j.chemgeo.2004.11.013

4. Andersen T., Griffin W.L., Jackson S.E., Knudsen T.-L. (2004) Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos, 73(3-4), 289-318. DOI: https://doi.org/10.1016/j.lithos.2003.12.011

5. Andersen T., Griffin W.L., Pearson N.J. (2002) Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. J. Petrol., 43, 1725-1747. https://doi.org/10.1093/petrology/43.9.1725

6. Andersen T., Saeed A., Gabrielsen R.H., Olaussen S. (2011) Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U-Pb, Lu-Hf and trace element analyses of detrital zircons by laser ablation IC-MPS. Norw. J. Geol., 91(1-2), 1-18.

7. Andreichev V.L., Soboleva A.A., Gerels Dzh. (2013) U-Pb age of detrital zircons from the Upper Precambrian terrigenous section of North Timan. Dokl. Earth Sci., 450(2), 592-596 DOI: 10.1134/S1028334X13060093

8. Ayres M., Harris N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chem. Geol., 139(1-4), 249-269. DOI: https://doi.org/10.1016/S0009-2541(97)00038-7

9. Badida L.V., Maslov A.V., Mizens G.A. (2020) Provenance reconstructions. Modern methods of detrital minerals’ research (garnets, tourmalines, chrome spinellides, rutiles, chlorites, pyroxenes and amphiboles). Litosfera, 20(2), 149-167. (In Russian)

10. Barr S.M., Davis D.W., Kamo S., White C.E. (2003) Significance of U-Pb detrital zircon ages in quartzite from periGondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambr. Res., 126(1-2), 123-145. DOI: https://doi.org/10.1016/S0301-9268(03)00192-X

11. Bea F., Montero P. (1999) Behaviour of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta, 63(7-8), 1133-1153. DOI: https://doi.org/10.1016/S0016-7037(98)00292-0

12. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143(5), 602-622. DOI: https://doi.org/10.1007/s00410-002-0364-7

13. Belousova E.A., Griffin W.L., O’Reilly S.Y. (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. J. Petrol., 47(2), 329-353. DOI: 10.1093/petrology/egi077

14. Belousova E.A., Griffin W.L., Pearson N.J. (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral. Mag., 62(3), 355-366. DOI: https://doi.org/10.1180/002646198547747

15. Belousova E.A., Kostitsyn Y.A., Griffin W.L., Begg G.C., O’Reilly S.Y., Pearson N.J. (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos, 119(3-4), 457-466. DOI: https://doi.org/10.1016/j.lithos.2010.07.024

16. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust. J. Earth Sci., 48(4), 603-619. DOI: https://doi.org/10.1046/j.1440-0952.2001.00879.x

17. Bibikova E.V., Bogdanova S.V., Postnikov A.V., Popova L.P., Kirnozova T.I., Fugzan M.M., Glushchenko V.V. (2009) Sarmatia-Volgo-Uralia junction zone: Isotopic-geochronologic characteristic of supracrustal rocks and granitoids. Stratigr. Geol. Correl., 17(6), 561-573. DOI: https://doi.org/10.1134/S086959380906001X

18. Bingen B., Birkeland A., Nordgulen O., Sigmond E.M.O. (2001) Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. Precambr. Res., 108(3-4), 293-318. https://doi.org/10.1016/S0301-9268(01)00133-4

19. Bingen B., Demaiffe D., Hertogen J. (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim. Cosmochim. Acta, 60(8), 1341-1354. https://doi.org/10.1016/0016-7037(96)00006-3

20. Bogdanova S.V., Belousova E.A., De Waele B., Postnikov A.V. (2013) Zircon from Mesoarchean enderbites of Volgo-Uralia: U-Pb age, REE, Hf and O isotope compositions. Mineral. Mag., 77(5), 727. DOI: http://dx.doi.org/10.1180/minmag.2013.077.5.2

21. Bogdanova S.V., De Waele B., Bibikova E.V., Belousova E.A., Postnikov A.V., Fedotova A.A., Popova L.P. (2010) Volgo-Uralia: the first U-Pb, Lu-Hf and Sm-Nd isotopic evidence of preserved Paleoarchean crust. Amer. J. Sci., 310(10), 1345-1383. DOI: 10.2475/10.2010.06

22. Cao M., Li G., Qin K., Seitmuratova E.Y., Liu Y. (2012) Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization. Res. Geol., 62(1), 63-83. DOI: https://doi.org/10.1111/j.1751-3928.2011.00180.x

23. Cavosie A.J., Valley J.W., Wilde S.A. (2006) Correlated microanalysis of zircon: Trace element, d18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim. Cosmochim. Acta, 70, 5601-5616. DOI: 10.1016/j.gca.2006.08.011

24. Chakhmouradian A.R., Reguir E.P., Mitchell R.H. (2002) Strontium-apatite: New occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. Can. Mineral., 40(1), 121-136.

25. Chu M.-F., Wang K.-L., Griffin W.L., Chung S.-L., O’Reilly S.Y., Pearson N.J., Iizuka Y. (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan Granitoids. J. Petrol., 50(10), 1829-1855. DOI: https://doi.org/10.1093/petrology/egp054

26. Condie K.C., Beyer E., Belousova E., Griffin W.L., O’Reilly S.Y. (2005) U-Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambr. Res., 139(1-2), 42-100. DOI: https://doi.org/10.1016/j.precamres.2005.04.006

27. Davis D.W. (2002) U-Pb geochronology of Archaean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambr. Res., 115(1-4), 97-117. DOI: https://doi.org/10.1016/S0301-9268(02)00007-4

28. De Haas G.J.L.M., Andersen T., Vestin J. (1999) Detrital zircon geochronology: new evidence for an old model for accretion of the Southwest Baltic Shield. J. Geol., 107(5), 569-586. DOI: 10.1086/314370

29. Dickinson W.R., Lawton T.F., Gehrels G.E. (2009) Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. J. Geol., 37(6), 503-506. DOI: https://doi.org/10.1130/G25646A.1

30. Dill H.G. (1994) Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks? Sediment. Geol., 92(3-4), 175-196. DOI: https://doi.org/10.1016/0037-0738(94)90105-8

31. Ershova V.B., Prokop’ev A.V., Khudolei A.K., Shneider G.V., Andersen T., Kullerud K., Makar’ev A.A., Maslov A.V., Kolchanov D.A. (2015) Results of U-Pb (La-ICP MS) dating of detrital zircons from metaterrigenous rocks of the basement of the North Kara basin. Dokl. Earth Sci., 464(2), 997-1000 DOI: 10.1134/S1028334X15100013

32. Fedo C.M., Sircombe K.N., Rainbird R.H. (2003) Detrital zircon analysis of the sedimentary record. Rev. Mineral. Geochem., 53(1), 277-303. DOI: https://doi.org/10.2113/0530277

33. Fleischer M., Altschuler Z.S. (1986) The lanthanides and yttrium in minerals of the apatite group – an analysis of the available data. Neues Jahrbuch fuer Mineralogie, Monatshefte, (10), 467-480.

34. Gaucher C., Finey S.C., Poire D.G., Valencia V.A., GroveM., Blanco G., Pamoukaghlian K., Peral L.G. (2008) Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights into the geological evolution of the Rio dela Plata Craton. Precambr. Res., 167(1-2), 150-170. DOI: https://doi.org/10.1016/j.precamres.2008.07.006

35. Gillespie J., Glorie S., Khudoley A., Collins A.S. (2018) Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia). Lithos, 314-315, 140-155. DOI: https://doi.org/10.1016/j.lithos.2018.05.026

36. Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O’Reilly S.Y., 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambr. Res., 131(3-4), 231-282. https://doi.org/10.1016/j.precamres.2003.12.011

37. Griffin W.L., Belousova E.A., Walters S.G., O’Reilly S.Y. (2006) Archean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia: U-Pb and Hf-isotope studies of detrital zircons. Aust. J. Earth Sci., 53(1), 125-149. DOI: https://doi.org/10.1080/08120090500434591

38. Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterberg E., O’Reilly S.Y., Shee S.R. (2000) The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64(1), 133-147. DOI: https://doi.org/10.1016/S0016-7037(99)00343-9

39. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghøj K., Schwartz J.J. (2007) Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. J. Geol., 35(7), 643-646. DOI: https://doi.org/10.1130/G23603A.1

40. Guo S., Ye K., Wu T.F., Chen Y., Yang Y.H., Zhang L.M., Liu J. B., Mao Q., Ma Y.G. (2013) A potential method to confirm the previous existence of lawsonite in eclogite: The mass imbalance of Sr and LREEs in multistage epidote (Ganghe, Dabie UHP terrane). J. Metamor. Geol., 31(4), 415-435. DOI: https://doi.org/10.1111/jmg.12027

41. Hammerli J., Kemp A.I.S., Spandler C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet. Sci. Lett., 392, 133-142. DOI: https://doi.org/10.1016/j.epsl.2014.02.018

42. Hartmann L.A., Leite J.A.D., Silva L.C., Remus M.V.D., McNaughton N.J., Groves D.I., Fletcher I.R., Santos J.O.S., Vasconcellos M.A.Z. (2000) Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Austr. J. Earth Sci., 47(5), 829-844. DOI: https://doi.org/10.1046/j.1440-0952.2000.00815.x

43. Hartmann L.A., Santos J.O.S. (2004) Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. J. Geol., 32(1), 73-76. DOI: https://doi.org/10.1130/G20007.1

44. Hermann J. (2002) Allanite: Thorium and light rare earth element carrier in subducted crust. Chem. Geol., 192(3-4), 289-306. DOI: https://doi.org/10.1016/S0009-2541(02)00222-X

45. Hoskin P.W.O., Ireland T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. J. Geol., 28(7), 627-630. DOI: https://doi.org/10.1130/0091-7613(2000)28%3C627:REECOZ%3E2.0.CO;2

46. Hoskin P.W.O., Schaltegger U. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. (Eds J.M. Hanchar, P.W.O. Hoskin), 53(1), 27-62. DOI: https://doi.org/10.2113/0530027

47. Ivleva A.S., Podkovyrov V.N., Ershova V.B., Khubanov V.B., Khudolei A.K., Sychev S.N., Vdovina N.I., Maslov A.V. (2018) U-Pb LA-ICP-MS Age of Detrital Zircons from the Lower Riphean and Upper Vendian Deposits of the Luga-Ladoga Monocline. Dokl. Earth Sci., 480(2), 695-699 DOI: https://doi.org/10.1134/S1028334X1806003X)

48. Jafarzadeh M., Harami R.M., Friis H., Amini A., Mahboubi A., Lenaz D. (2014) Provenance of the Oligocene-Miocene Zivah formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses. J. Afr. Earth Sci., 89, 56-71. DOI: https://doi.org/10.1016/j.jafrearsci.2013.10.005

49. Kinney P.D., Maas R. (2003) Lu-Hf and Sm-Nd isotope systems in zircon. Rev. Mineral. Geochem. (Eds J.M. Hanchar, P.W.O. Hoskin), 53(1), 327-341. DOI: https://doi.org/10.2113/0530327

50. Kirillova G.L. (2014) Reconstruction of Late Mesozoic provenances for the East Asian continental margin based on U-Pb detrital zircon geochronology. Dokl. Earth Sci., 456(2), 646-658. DOI: https://doi.org/10.1134/S1028334X14060130

51. Kosteva N.N., Kuznetsov N.B., Teben’kov A.M., Romanyuk T.V. (2014) First results of the U-Pb isotopic (LA-ICP-MS) dating of detrital zircons from the Lower Paleozoic of Spitsbergen. Dokl. Earth Sci., 455(1), 259-265. DOI: https://doi.org/10.1134/S1028334X1403026X

52. Kovach V.P., Ryazantsev A.V., Tret’yakov A.A., Degtyarev K.E., Tolmacheva E.V., Van K.L., Kotov A.B., Chun S.L., Dzhan B.M. (2014) U-Pb age of detrital zircons from neoproterozoic placers of the Erementau-Niyaz massif as a reflection of stages of Precambrian tectono-magmatic evolution of northern Kazakhstan. Dokl. Earth Sci., 455(1), 254-258 DOI: https://doi.org/10.1134/S1028334X14030271

53. Kuz’min V.K. (2014) The age of sedimentation and metamorphism for terrigenous rocks of the Middle Kamchatka and Ganalskii Rises from the SHRIMP U-Pb dating on zircons. Dokl. Earth Sci., 454(2), 149-153 DOI: https://doi.org/10.1134/S1028334X14020226

54. Kuznetsov N.B., Alekseev A.S., Belousova E.A., Romanyuk T.V., Reimers A.N., Tsel’movich V.A. (2014)

55. Testing the models of Late Vendian evolution of the Northeastern Periphery of the East European Craton based on the first U/Pb dating of detrital zircons from Upper Vendian sandstones of Southeastern White Sea Region. Dokl. Earth Sci., 458(1), 1073-1076 DOI: https://doi.org/10.1134/S1028334X14090311

56. Kuznetsov N.B., Belousova E.A., Krupenin M.T., Romanyuk T.V., Maslov A.V. (2017) The results of geochronological and isotope–geochemical study of zircons from tuff of the Sylvitsa Group (western slope of the Middle Urals): The origin of ash layers in Vendian rocks of the East European Platform. Dokl. Earth Sci., 473(1), 359-362 DOI: https://doi.org/10.1134/S1028334X17030254

57. Kuznetsov N.B., Romanyuk T.V., Shatsillo A.V., Golovanova I.V., Danukalov K.N., Meert Dzh. (2012) Detritial zircons age of the Asha Group (Southern Urals) – confirmation of the contingence for Baltica Ural part and Australia Queensland part in Rodinia framework (“Australia upside down conception”). Litosfera, (4), 59-77. (In Russian)

58. Lahtinen R., Huhma H., Kousa J. (2002) Contrasting source components of the Paleoproterozoic Svecofennian metasediments: Detrital zircon U-Pb, Sm-Nd and geochemical data. Precambr. Res., 116(1- 2), 81-109. DOI: https://doi.org/10.1016/S0301-9268(02)00018-9

59. Lauri L.S., Andersen T., Holtta P., Huhma H., Graham S. (2011) Evolution of the Archaean Karelian province in the Fennoscandian Shield in the light of U-Pb zircon ages and Sm-Nd and Lu-Hf Isotope systematics. J. Geol. Soc., London, 168, 201-218. DOI: https://doi.org/10.1144/0016-76492009-159

60. Maslov A.V., Gareev E.Z., Krupenin M.T. (1998) Osadochnye posledovatel’nosti rifeya tipovoi mestnosti (retrospektivnyi obzor sedimentologicheskikh, paleogeograficheskikh, litologo-mineralogicheskikh i petrogeokhimicheskikh issledovanii) [Riphean sedimentary sequences of a typical locality retrospective review of sedimentological, paleogeographic, lithological-mineralogical, and petrogeochemical studies]. Ufa, Print Publ., 225 p. (In Russian)

61. Maslov A.V., Mel’nichuk O.Yu., Mizens G.A., Chervyakovskaya M.V. (2020) Provenance reconstructions. Mineralogical-petrographic approaches and methods. Litosfera, 20(1) 40-62. (In Russian)

62. Maslov A.V., Mel’nichuk O.Yu., Mizens G.A., Titov Yu.V. (2019) Provenance reconstructions. Litho- and isotopegeochemical approaches and methods. Litosfera, 19(6), 834-860. (In Russian)

63. Maslov A.V., Mizens G.A., Vovna G.M., Kiselev V.I., Ronkin Yu.L. (2016) Clastic zircons from sandstones of the Lower Triassic of the Belskaya Depression of the Ural Trough: LA-ICP-MS U-Pb isotopic ages and distribution of rare and trace elements. Litosfera, (1), 7-28. (In Russian)

64. Maslov A.V., Petrov G.A., Ronkin Yu.L. (2018) The early stages of the evolution of uralids: U-Pb systematics of detrital zircons from rocks of riftogenic associations. Stratigr. Geol. Korrel., 26(2), 3-20. (In Russian)

65. Maslov A.V., Vovna G.M., Kiselev V.I., Krupenin M.T., Ronkin Yu.L. (2011) First U-Pb dates for detrital zircons from deposits of Serebryanka Group (Upper Proterozoic, Middle Urals). Dokl. Earth Sci., 439(1), 933-938. DOI: https://doi.org/10.1134/S1028334X11070257

66. Maslov A.V., Vovna G.M., Kiselev V.I., Ronkin Yu.L., Krupenin M.T. (2012) Detrital zircons U-Pb-systematics from Serebryanka series sediments (Middle Urals). Litologiya i Polez. Iskopaemye, (2), 180-196. (In Russian)

67. Morton A.C. (2012) Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. (Ed. P. Sylvester). Mineralogical Association of Canada Short Course Series, 42, 133-165.

68. Morton A.C., Hallsworth C.R. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol., 124(1-4), 3-29. DOI: https://doi.org/10.1016/S0037-0738(98)00118-3

69. Morton A., Yaxley G. (2007) Detrital apatite geochemistry and its application in provenance studies. Geol. Soc. Amer. Spec. Pap., 420, 319-344. DOI: https://doi.org/10.1130/2006.2420(19)

70. Nutman A.P. (2007) Apatite recrystallisation during prograde metamorphism, Cooma, southeast Australia. Implications for using an apatite-graphite association as a biotracer in ancient metasedimentary rocks. Aust. J. Earth Sci., 54(8), 1023-1032. DOI: https://doi.org/10.1080/08120090701488321

71. Patchett P.J. (1983) Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta, 47, 81-91. https://doi.org/10.1016/0016-7037(83)90092-3

72. Patchett P.J., Kouvo O., Hedge C.E., Tatsumoto M. (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib. Mineral. Petrol., 78, 279-297. https://doi.org/10.1007/BF00398923

73. Patchett P.J., Tatsumoto M. (1980) A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol., 75(3), 263-267. https://doi.org/10.1007/BF01166766

74. Petrov G.A., Ronkin Yu.L., Gerdes A., Maslov A.V. (2015) First results of U-Pb dating of detrital zircons from metasandstones of the Isherim anticlinorium (North Urals). Dokl. Earth Sci., 464(2), 1010-1014 DOI: https://doi.org/10.1134/S1028334X15100165

75. Pettijohn F.J. (1941) Persistence of heavy minerals and geological age. J. Geol., 49, 610-625.

76. Pettijohn F.J., Potter P., Siver R. (1976) Peski i peschaniki [Sands and Sandstones]. Moscow, Mir Publ., 534 p. (In Russian)

77. Piccoli P.M., Candela P.A. (2002) Apatite in igneous systems. Rev. Mineral. Geochem., 48(1), 255-292. DOI: https://doi.org/10.2138/rmg.2002.48.6

78. Rainbird R.H., Davis W.J. (2007) U-Pb detrital zircon geochronology and provenance of the late Paleoproterozoic Dubawnt Supergroup: Linking sedimentation with tectonic reworking of the western Churchill Province, Canada. GSA Bull., 119(3-4), 314-328. DOI: https://doi.org/10.1130/B25989.1

79. Romanyuk T.V., Kuznetsov N.B., Belousova E.A., Gorozhanin V.M., Gorozhanina E.N. (2018) Paleotectonic and paleogeographic environments of the Lower Riphean Ai Formation (Bashkirian Uplift, Southern Urals) by the “TerraneChrone®” technique of detrital zircons study. Geodinamika i tektonofizika, 9(1), 1-37. DOI: 10.5800/GT-2018-9-1-0335 (In Russian)

80. Romanyuk T.V., Kuznetsov N.B., Maslov A.V., Belousova E.A., Krupenin M.T., Ronkin Yu.L., Gorozhanin V.M., Gorozhanina E.N. (2014) Geochemical and Lu/Hf isotopic (LA-ICP-MS) signature of detrital zircons from sandstones of the basal levels of the Riphean stratotype. Dokl. Earth Sci., 459(1), 1356-1360 DOI: https://doi.org/10.1134/S1028334X14110257

81. Romanyuk T.V., Maslov A.V., Kuznetsov N.B., Belousova E.A., Ronkin Yu.L., Krupenin M.T., Gorozhanin V.M., Gorozhanina E.N., Seregina E.S. (2013) First data on LA-ICP-MS U-Pb zircon geochronology of Upper Riphean sandstones of the Bashkir Anticlinorium (South Urals). Dokl. Earth Sci., 452(2), 997-1000 DOI: https://doi.org/10.1134/S1028334X13100164

82. Safonova I., Maruyama S., Hirata T., Kon Y., Rino S. (2010) LA-ICP-MS U-Pb ages of detrital zircons from Russia largest rivers: Implications for major granitoid events in Eurasia and global episodes of supercontinent formation. J. Geodynamics, 50(3-4), 134-153. DOI: https://doi.org/10.1016/j.jog.2010.02.008

83. Sambridge M.S., Compston W. (1994) Mixture modelling of multicomponent data sets with application to ion-probe zircon ages. Earth Planet. Sci. Lett., 128(3-4), 373-390. DOI: https://doi.org/10.1016/0012-821X(94)90157-0

84. Sassi R., Harte B., Carswell D.A., Yujing H. (2000) Trace element distribution in Central Dabie eclogites. Contrib. Mineral. Petrol., 139(3), 298-315. DOI: https://doi.org/10.1007/s004100000133

85. Sergeeva N.D. (1989) Mineralogicheskaya korrelyatsiya verkhnedokembriiskikh obrazovanii Yuzhnogo Urala. Dis. … kand. geol.-min. nauk [Mineralogical correlation of the Upper Precambrian formations of the Southern Urals. Cand. geol. and min. sci.diss.]. Sverdlovsk, IGG UB AN USSR, 23 p. (In Russian)

86. Sha L.K., Chappell B.W. (1999) Apatite chemical composition, determined by electron microprobe and laser ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta, 63(22), 3861-3881. DOI: https://doi.org/10.1016/S0016-7037(99)00210-0

87. Shkol’nik S.I., Letnikova E.F., Belichenko V.G., Proshenkin A.I., Geng H., Veshcheva S.V., Levin A.V. (2014) LAICP-MS U-Pb dating of detrital zircons from metaterrigenous deposits of the Vendian-Cambrian cover of the Tuva-Mongolian microcontinent (Tunka Bald Mountains, East Sayan). Dokl. Earth Sci., 454(2), 154-157. DOI: https://doi.org/10.1134/S1028334X14020056

88. Sircombe K.N. (2000) Quantitative comparison of geochronological data using multivariate analysis: a provenance study example from Australia. Geochim. Cosmochim. Acta, 64(9), 1593-1619. DOI: https://doi.org/10.1016/S0016-7037(99)00388-9

89. Sircombe K.N., Hazelton M.L. (2004) Comparison of detrital zircon age distributions by kernel functional estimation. Sediment. Geol., 171(1-4), 91-111. DOI: https://doi.org/10.1016/j.sedgeo.2004.05.012

90. Spandler C., Hermann J., Arculus R., Mavrogenes J. (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contrib. Mineral. Petrol., 146(2), 205-222. DOI: https://doi.org/10.1007/s00410-003-0495-5

91. Spear F.S., Pyle J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Rev. Mineral. Geochem., 48(1), 293-335. DOI: https://doi.org/10.2138/rmg.2002.48.7

92. Tang M., Wang X.L., Xu X.S., Zhu C., Cheng T., Yu Y. (2012) Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf-Nd isotopic decoupling. Gondw. Res., 21(1), 266-280. DOI: https://doi.org/10.1016/j.gr.2011.05.009

93. Tribuzio R., Messiga B., Vannucci R., Bottazzi, P. (1996) Rare earth element redistribution during high-pressure–low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones. J. Geol., 24(8), 711-714. DOI: https://doi.org/10.1130/0091-7613(1996)024%3C0711:REERDH%3E2.3.CO;2

94. Turkina O.M., Lepekhina E.N., Berezhnaya N.G., Kapitonov I.N. (2014) U-Pb age and Lu-Hf isotope systematics of detrital zircons from paragneiss of the Bulun block (Sharyzhalgai uplift of the Siberian Craton Basement). Dokl. Earth Sci., 458(2), 1265-1272. DOI: https://doi.org/10.1134/S1028334X14100225

95. Vavra G., Schmid R., Gebauer D. (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphiboliteto-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol., 134(4), 380-404. DOI: https://doi.org/10.1007/s004100050492

96. Vermeesch P. (2004) How many grains are needed for a provenance study? Earth Planet. Sci. Lett., 224(3-4), 351-441. DOI: https://doi.org/10.1016/j.epsl.2004.05.037

97. von Eynatten H., Dunkl I. (2012) Assessing the sediment factory: the role of single grain analysis. Earth-Sci. Rev., 115, 97-120.

98. Wiedenbeck M., Allen P., Corfu F., Griffin W.L., Meier M., Oberli F., von Quadt A., Roddick J.C., Spiegel W. (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl., 19(1), 1-23. DOI: https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

99. Williams I.S. (2001) Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust. J. Earth Sci., 48(4), 557-580. DOI: https://doi.org/10.1046/j.1440-0952.2001.00883.x

100. Zhang Z.-M., Shen K., Sun W.-D., Liu Y.-S., Liou J.G., Shi C., Wang J.-L. (2008) Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta, 72(13), 3200-3228. DOI: https://doi.org/10.1016/j.gca.2008.04.014


Review

For citations:


Badida L.V., Maslov A.V., Mizens G.A. Provenance reconstructions. Article 4. Modern methods for investigating detrital minerals (zircon, apatite). LITHOSPHERE (Russia). 2020;20(3):363-385. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-3-363-385

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)