Preview

LITHOSPHERE (Russia)

Advanced search

Composition, structure and model of the formation of conodont lamellar tissue

https://doi.org/10.24930/1681-9004-2020-20-2-184-195

Abstract

Research subject. This research was focused on the most common mineralized tissue that composes conodont elements. The aim was to investigate the characteristics of the composition and structure of this tissue and to reconstruct its formation process. Materials and methods. The work was based on a collection of well-preserved conodont elements from the Upper Devonian of the East European Platform and the Upper Devonian – Lower Carboniferous of the east of the Pechora Plate. Oriented and polished thin sections made from some of the elements were studied using light and electron microscopy, as well as a microhardness tester. Energy dispersive spectroscopy was used to determine the chemical (elemental) composition of the lamellar tissue. In addition, the carbon isotope ratio was determined for organic matter. Results. The study showed that the lamellar tissue in conodont elements consists of fluorohydroxylapatite crystallites of various morphology, surrounded by organic matter, which makes up 2–3% of the tissue. Variations in the composition of major elements incorporated in fluorohydroxylapatite of the lamellar tissue are insignificant. Organic matter is represented by a collagen-like protein, likely to be of a non-fibrillar type, with a light carbon isotopic composition (–26.2 ‰ PDB). The lamellar tissue has an average microhardness of 2.6 GPa, the variations of which are due to textural and structural features and the distribution of organic matter. In conodont elements, the lamellar tissue is in contact with other types of tissue. Transitions between tissues are relatively sharp at the borders of the lamellae and gradual within the same lamella. Conclusions. A model was developed, according to which the growth cycle of a conodont element covered the sequential formation of two lamellae preceded by the resorption of one external lamella. In the structures formed by the lamellar tissue, both lamellae consisted of this tissue. The lamellar tissue is of interest as a natural model of an organic-mineral composite based on protein and calcium phosphate.

About the Author

A. V. Zhuravlev
Institute of Geology, Komi Scientific Center, Ural Branch of RAS
Russian Federation
Andrei V. Zhuravlev


References

1. Aldridge R.J., Murdock J.E., Gabbott S.E., Theron J.N. (2013) A 17-element conodont apparatus from the Soom Shale Lagerstätte (Upper Ordovician), South Africa. Palaeontology, 56, 261-276.

2. Barnes C.R., Sass D.B., Monroe E.A. (1973) Ultrastructure of some Ordovician conodonts. Geol. Soc. Amer. Spec. Pap., 141, 1-30.

3. Bengtson S. (1976) The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9, 185-206.

4. Bengtson S. (1983) A functional model for the conodont apparatus. Lethaia, 16(1), 38.

5. Blieck A., Turner S., Burrow C.J., Schultze H.-P., Rexroad C.B., Bultynck P., Nowlan G.S. (2010) Fossils, histology, and phylogeny: why conodonts are not vertebrates. Episodes, 33, 234-241.

6. Burnett R.D., Hall J.C. (1992) Significance of ultrastructural features in etched conodonts. J. Paleontol., 66(2), 266- 276.

7. Conway Morris S., Harper E. (1988) Genome size in conodonts (Chordata): inferred variations during 270 million years. Science, 241, 1230-1232.

8. Donoghue P.C.J. (1998) Growth and patterning in the conodont skeleton. Phil. Trans. Royal Soc. London. B, 353, 633-666.

9. Dzik J. (1991) Evolution of oral apparatuses in the conodont chordates. Acta Palaeontol. Polonica, 36(3), 265-323.

10. Frank-Kamenetskaya O.V., Rosseeva E.V., Zhuravlev A.V., Rozhdestvenskaya I.V., Banova I.I., Simon P., Buder J., Carrillo-Cabrera W., Kniep R. (2008) Hard tissues of S-elements of late Paleozoic conodont: microstructural and crystallographic aspects. Fedorov Session 2008. Abstracts. RMS DPI 2008-2-72-1, 229–231.

11. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. (2014) Refinement of Apatite Atomic Structure of Albid Tissue of Late Devon Conodont. Cristallografiya, 59(1), 41-47. (In Russian)

12. Furnish W.M. (1938) Conodonts from the Prairie du Chien (Lower Ordovician) beds of the upper Mississippi Valley. J. Paleontol., 12(2), 318-340.

13. Hass W.H., Lindberg M.L. (1946) Orientation of the crystal units in conodonts. J. Paleontol., 20, 501-504.

14. Kemp A. (2002) Amino acid residues in conodont elements. J. Paleontol., 76, 518-528.

15. Kemp A., Nicoll R.S. (1997) A histochemical analysis of biological residues in conodont elements. Modern Geol., 21(3), 197-213.

16. Kürschner W., Becker R.T., Buhl D., Veizer J. (1992) Strontium isotopes in conodonts: DevonianCarboniferous transition, the Northern Rhenish Slate Mountains, Germany. Annales de la Societe geologique de Belgique, 115(2), 595-621.

17. Lindström M., Ziegler W. (1971) Feinstrukturelle Untersuchungenan Conodonten. 1. Die Uberfamilie Panderodontacea. Geol. Palaeontol., 9-33.

18. Martínez‐Pérez C., Plasencia P., Jones D., Kolar‐Jurkovšek T., Sha J., Botella H., Donoghue P.C.J. (2014) There is no general model for occlusal kinematics in conodonts. Lethaia, 47, 547-555. DOI: 10.1111/let.12080

19. Medici L., Malferrari D., Savioli M., Ferretti F. (2019) Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic). Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/j.palaeo.2019. 02.024

20. Nicholas C., Murray J., Goodhue R., Ditchfield P. (2004) Nitrogen and carbon isotopes in conodonts: Evidence of trophic levels and nutrient flux in Palaeozoic oceans. The Palaeontological Association 48th Annual Meeting, Abstracts, 126-127.

21. Over D.J., Grossman E.L. (1992) Carbon isotope analysis of conodont organic material – procedure and preliminary results. Geological Society of America, Abstracts with Programs, 24, A214.

22. Pierce R.M., Langenheim R.L. (1970) Surface patterns on selected Mississippian conodonts. Geol. Soc. Amer., Bull., 81, 3225-3236.

23. Purnell M.A., Donoghue P.C.J. (1997) Architecture and functional morphology of the skeletal apparatus of ozarcodinid conodonts. Phil. Trans. Royal Soc. London, B, 352, 1545-1564.

24. Rosseeva E., Borrmann H., Cardoso-Gil R., Carrillo-Cabrera W., Frank-Kamenetskaya O.V., Öztan Y., Prots Y., Schwarz U., Simon P., Zhuravlev A.V., Kniep R. (2011) Evolution and Complexity of Dental (Apatite-Based) Biominerals: Mimicking the Very Beginning in the Laboratory. Max-Planck-Institut für Chemische Physik fester Stoffe, Scientific Report 2009–2010, 171-176.

25. Sealy J., Johnson M., Richards M., Nehlich O. (2014) Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J. Archaeol. Sci., 47, 64-69.

26. Shirley B., Grohganz M., Bestmann M., Jarochowska E. (2018) Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high resolution imaging. Proc. Royal Soc. London, B, 285, 20181614. http://dx.doi.org/10.1098/rspb.2018.1614

27. Simon P., Grüner D., Worch H., Pompe W., Lichte H., El Khassawna T., Heiss C., Wenisch S., Kniep R. (2018) First evidence of octacalcium phosphate osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep., 8, 13696. DOI: 10.1038/s41598-018-31983-5

28. Simonetta A.M., Pucci A., Dzik J. (1999) Hypotheses on the origin and early evolution of chordates in the light of recent zoological and palaeontological evidence. Ital. J. Zool., 66, 99-119.

29. Suttner T.J., Kido E., Briguglio A. (2018) A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae. J. System. Palaeontol., 16(11), 909-926. DOI: 10.1080/14772019.2017.1354090

30. Sweet W.C. (1988) The Conodonta. Morphology, Taxonomy. Paleoecology and Evolutionary History of a LongExtinct Animal Phylum. Oxford: Clarendon Press, 212 p.

31. Wheeley J.R., Smith M.P., Boomer I. (2012) Oxygen isotope variability in conodonts: implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. J. Geol. Soc., London, 169, 239-250. DOI: 10.1144/0016-76492011-048

32. Wright J. (1990) Conodont geochemistry: a key to the Palaeozoic. Courier Forschungsinstitut Senckenberg, 118, 227-305.

33. Zhang M., Iang H., Purnell M.A., Lai X. (2017) Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus. Palaeontol., 60, 595-608.

34. Zhuravlev A.V. (1994) Polygonal ornament in conodonts. Lethaia, 26, 287-288.

35. Zhuravlev A.V. (2002) Gistologiya i mikroskul’ptura pozdnepaleozoiskikh konodontovykh elementov [Late Palaeozoic conodont element histology and microornamenta tion]. St.Petersburg, NPF Geoservice-Plus Publ., 94 p. (In Russian)

36. Zhuravlev A.V. (2017) Comparative histology of conodonts and early vertebrates. Vestnik IG Komi SC UB RAS, (4), 37-42.

37. Zhuravlev A.V. (2017) Structure of organic matter of conodont elements – atomic-force microscopy data. Vestnik IG Komi NTs UrO RAN, 10, 20-25. (In Russian)

38. Zhuravlev A.V. (2018) Composition of organic matter of conodont elements. Trudy XVII Vserossiiskogo mikropaleontologicheskogo soveshchania “Sovremennaya mikropaleontologiya – problemy i perspektivy” (Eds M.S. Afanas’eva, A.S. Alekseev) [Proceedings of the XVII All-Russian micropaleontological meeting “Modern micropaleontology – problems and prospects”]. Moscow, PIN RAS, 300-303. (In Russian)

39. Zhuravlev A.V., Gerasimova A.I. (2015) Albid tissue of the conodont elements: composition and forming model. Vestnik IG, 10(250), 21-27. (In Russian, English abstract)

40. Zhuravlev A.V., Sapega V.F. (2007) XRD data on composition of the hard tissues of the Late Palaeozoic conodonts. “Biokosnye vzaimodeistviya: zhizn’ i kamen’”. Mat-ly III Mezhdunarodnogo simpoziuma [“Bio-Inert Interactions: Life and Rocks”. Materials of the 3rd International Symposium]. St.Petersburg, 63-64. (In Russian)

41. Zhuravlev A.V., Shevchuk S.S. (2017) Strontium distribution in Upper Devonian conodont elements: a palaeobiological proxy. Riv. It. Paleontol. Strat., 123(2), 203-210.

42. Zhuravlev A.V., Smoleva I.V. (2018) Carbon isotope values in conodont elements from the latest Devonian – Early Carboniferous carbonate platform facies (Timan-Pechora Basin). Eston. J. Earth Sci., 67(4), 238-246. DOI: 10.3176/earth.2018.17


Review

For citations:


Zhuravlev A.V. Composition, structure and model of the formation of conodont lamellar tissue. LITHOSPHERE (Russia). 2020;20(2):184-195. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-2-184-195

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)