Incipient stages of transformation of round natural diamonds under dissolution in Fe-S melt at high pressure
https://doi.org/10.24930/1681-9004-2019-19-6-945-952
Abstract
Research subject. The article presents the results of a microscopic and photogoniometric study of natural rounded diamonds of tetraghexahedral habit from the kimberlite pipe “Internationalnaya” (Yakutia). The diamonds was partially dissolved in a sulphur-containing iron melt (sulphur content of 15–30 wt %) at 4.5 GPa and 1450ºС.
Methods. The experiments were carried out on a multi-puncheon apparatus of a “split-sphere” type in high-pressure solid-phase cells made of refractory oxides ZrO2, CaO, MgO using a cylindrical shape graphite heater. The crystals were studied using an MBS-10 optical microscope with a photo camera, and a Jeol JSM-6510LV scanning electron microscope. A goniometric study of diamond crystals was carried out by a photo method in a cylindrical chamber. It was found that when a sulphur content was 15 wt %, diamond crystals of tetrahexahedral habit were transformed into a curved shaped octahedroids with morphological features similar to natural diamonds found in kimberlites. When the sulphur content was 23–30 wt %, the rate of dissolution of diamonds in the Fe-S melt sharply reduced, while the diamond surface at the micro level became covered with numerous etching hillocks, whose sidewalls have surfaces similar to flat-faced {111} form. Dissolution of the rounded diamonds in the Fe-S melt at high pressure occurred by a “normal” mechanism, that is perpendicular to the surface of the dissolving crystal through trigonal dissolution layers, while a tangential-layered mechanism played a minor role.
Conclusion. The natural diamond crystals could underwent dissolution in the mantle before they were captured by kimberlite magma. Two fundamentally different types of homomorphic and typomorphic features of the dissolution forms observed on natural diamonds can be determined, namely: on one side, those associated with storage in mantle before the crystals were captured by the kimberlite magma, and on the other side, with the kimberlite process itself. The presence of octahedral diamonds with parallel (trigonal) striation in kimberlite deposits may indicate on a high degree of diamond preservation due to relatively insignificant effect of the kimberlite magma. This, undoubtedly, should help to decipher the diamond genesis and, possibly, improve the mineralogical criteria used in diamond exploration.
Keywords
About the Authors
V. M. SoninRussian Federation
3 Akademik Koptyug av., Novosibirsk 630090
E. I. Zhimulev
Russian Federation
3 Akademik Koptyug av., Novosibirsk 630090
A. A. Chepurov
Russian Federation
3 Akademik Koptyug av., Novosibirsk 630090
B. S. Pomazanskiy
Russian Federation
Mirny, Sakha Republic 678170
V. P. Afanasiev
Russian Federation
3 Akademik Koptyug av., Novosibirsk 630090
A. I. Chepurov
Russian Federation
3 Akademik Koptyug av., Novosibirsk 630090
References
1. Afanas’ev V.P., Efimova E.S., Zinchuk N.N., Koptil’ V.I. (2000) Atlas morfologii almazov Rossii [Atlas of morphology of Russian diamonds]. Novosibirsk, SB RAS, OIGGM Publ., 298 p. (In Russian)
2. Arima M., Kozai Y. (2008) Diamond dissolution rates in kimberlitic melts at 1300–1500°C in the graphite stability field. Eur. J. Mineral., 20, 357-364.
3. Bartoshinskii Z.V., Kvasnitsa V.N. (1991) Kristallomorfologiya almaza iz kimberlitov [Crystalomorphology of kimberlite diamond]. Kiev, Nauk. Dumka Publ., 172 p. (In Russian)
4. Bescrovanov V.V. (2000) Ontogeniya almaza [Diamond ontogeny]. Novosibirsk, Nauka Publ., 264 p. (In Russian)
5. Bulanova G.P., Griffin W.L., Ryan C.G. (1998) Nucleation environment of diamonds from Yakutian kimberlites. Mineral. Mag., 62, 409-419.
6. Bulanova G.P., Spetsius Z.V., Leskova N.V. (1990) Sul’fidy v almazakh i ksenolitakh iz kimberlitovykh trubok Yakutii [Sulfides in diamonds and xenoliths from Yakutian kimberlite pipes]. Novosibirsk, Nauka Publ., 120 p. (In Russian)
7. Chepurov A.I., Khokhryakov A.F., Sonin V.M., Pal’yanov Yu.N., Sobolev N.V. (1985) The shape of diamond crystal dissolution in silicate melts under high pressure. Dokl. Akad. Nauk USSR, 285(1), 212-216. (In Russian)
8. Chepurov A.I., Sonin V.M., Zhimulev E.I., Chepurov A.A., Pomazansky B.S., Zemnukhov A.L. (2018) Dissolution of diamond crystals in a heterogeneous (metal-sulfidesilicate) medium at 4 GPa and 1400°C. J. Mineral. Petrol. Sci., 113(2), 59-67.
9. Fedortchouk Y., Canil D., Semenets E. (2007) Mechanism of diamond oxidation and their bearing on the fluid composition in kimberlitic magmas. Amer. Mineral., 92, 1200-1212.
10. Garanin V.K., Kudryavtseva G.P. (1990) Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites. Lithos, 25, 211217.
11. Genshaft Yu.S., Yakubova S.A., Volkova L.M. (1977) Internal morphology of natural diamonds, Studies of deep minerals. Issledovanie glubinnykh mineralov [Research of deep kimberlit]. Moscow, Akad. Nauk USSR, 5-31. (In Russian)
12. Kaminsky F.V., Wirth R. (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can. Mine ral., 49, 555-572.
13. Kanda H., Yamaoka S., Setaka N., Komatsu H. (1977) Etching of diamond octahedrons by high pressure water. J. Cryst. Growth, 38, 1-7.
14. Khokhryakov A.F., Pal’yanov Yu.N. (2007) The evolution of diamond morphology in the process of dissolution: Experimental data. Amer. Mineral., 92, 909-917.
15. Kozai Y., Arima M. (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 13001420°C and 1 GPa with controlled oxygen partial pressure. Amer. Mineral., 90, 1759-1766.
16. Orlov Yu.L. (1963) Morfologiya almaza [Diamond morphology]. Moscow, Akad. Nauk USSR, 236 p. (In Russian)
17. Sobolev N.V., Efimova E.S., Pospelova L.N. (1981) Native iron in diamonds of Yakutia and its paragenesis. Geol. Geofiz., 22(12), 25-29. (In Russian)
18. Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., Wang W. (2016) Large gem diamonds from metallic liquid in Earth’s deep mantle. science, 35(6318), 1403-1405.
19. Sonin V.M., Zhimulev E.I., Chepurov A.I., Afanas’ev V.P. (2002) Morphology of diamond crystals etched in kimberlite melt at high P-T parameters. Izvestiya Vysshikh Uchebnykh Zavedenii, Geologiya i Razvedka, (1), 60-69. (In Russian)
20. Sonin V.M., Zhimulev E.I., Chepurov A.A., Chepurov A.I., Pokhilenko N.P. (2018b) Influence of the sulfur concentration in a Fe-S melt on diamond preservation under P-T conditions of the Earth’s mantle. Dokl. Earth Sci., 481(1), 922-924.
21. Sonin V.M., Zhimulev E.I., Fedorov I.I., Osorgin N.Yu. (1997) Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P-T parameters. Geokhimiya, (4), 451-455. (In Russian)
22. Sonin V.M., Zhimulev E.I., Pomazansky B.S., Zemnukhov A.L., Afanasiev V.P., Chepurov A.I. (2017) Photohoniometry of diamond crystals dissolved in heterogeneous media under 4 GPa pressure at 1400°C. Zapiski RMO, (5), 115-124. (In Russian)
23. Sonin V.M., Zhimulev E.I., Pomazanskiy B.S., Zemnukhov A.L., Chepurov A.A., Afanasiev V.P., Chepurov A.I. (2018a) Morphological features of diamond crystals dissolved in Fe0.7S0.3 melt 4 GPa and 1400°С. Geol. Ore Deposits, 60(1), 82-92.
24. Sonin V.M., Zhimulev E.I., Tomilenko A.A., Chepurov S.A., Chepurov A.I. (2004) Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability. Geol. Ore Deposits, 46(3), 182-190.
25. Spetsius Z.V., Bogush Z.V. (2018) Structural features and macroinclusions in diamonds of eclogite and peridotite genesis. “Effektivnost’ geologorazvedochnykh rabot na almazy: prognozno-resursnye, metodicheskie, innovatsionno-tekhnologicheskie puti ee povysheniya”. Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 50-letiyu CNIGRI-YANIGP ALROSA [“Efficiency of exploration works for diamonds: forecast-resource, methodical, innovativetechnological ways of its increase”. Materials V all-Russian conf. with intern. participation dedicated to the 50th anniversary of the Diamond Laboratory CNIGRI-YANIGP ALROSA]. Mirnyi, 176-180. (In Russian)
26. Stachel T., Harris J.W., Brey G.P. (1998) Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania. Contrib. Mineral. Petrol., 132, 34-47.
27. Varshavskii A.V. (1968) Anomal’noe dvuprelomlenie i vnutrennyaya morfologiya almazov [Anomalous birefringence and internal morphology of diamond]. Moscow, Nauka Publ., 92 p. (In Russian)
28. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. science, 334, 54-57.
29. Zhimulev E.I., Chepurov A.I., Sinyakova E.F., Sonin V.M., Chepurov A.A., Pokhilenko N.P. (2012) Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond. Geochem. Int., 50(3), 205-216.
30. Zhimulev E.I., Sonin V.M., Afanasiev V.P., Chepurov A.I., Pokhilenko N.P. (2016a) Fe-S melt as a likely solvent of diamond under mantle conditions. Dokl. Earth Sci., 471(2), 1277-1279.
31. Zhimulev E.I., Sonin V.M., Mironov A.M., Chepurov A.I. (2016b) Effect of sulfur concentration on diamond crystallization in the Fe-C-S system at 5.3-5.5 GPa and 1300– 1370°C. Geochem. Int., 54(5), 415-422.
Review
For citations:
Sonin V.M., Zhimulev E.I., Chepurov A.A., Pomazanskiy B.S., Afanasiev V.P., Chepurov A.I. Incipient stages of transformation of round natural diamonds under dissolution in Fe-S melt at high pressure. LITHOSPHERE (Russia). 2019;19(6):945-952. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-6-945-952