Strike-slip related tectogenesis and structure-forming flow of crustal masses of the Asia-Pacific transition zone
https://doi.org/10.24930/1681-9004-2019-19-5-780-799
Abstract
Research subject. This study was aimed at examining the strike-slip related tectogenesis of the Asia-Pacific transition zone (APTZ).
Materials and methods. The research was based on the materials collected by the author during long-term fieldwork across the territories of Primorye, Khabarovsk Krai and, partly,Vietnam. Extensive materials on the topic of the APTZ tectogenesis published by researchers fromRussia,China andJapan were analysed. Investigations involved the study of structural and kinematic assemblages representing the forms, directions and time of crustal mass flows under the strike-slip related tectogenesis of the East Asian global strike-slip fault zone (EAGSSFZ).
Results. The EAGSSFZ consists of three transit strike-slip fault systems (zones) playing the role of the APTZ basic deep fault structures. Its master system (MS) is NNE (25–30°) trending longitudinally to theAsia edge. The MS is bordered by diagonal NE 50–70° trending near-continental and meridional near-oceanic EAGSSFZ systems. The MS controls the East Asian volcano-plutonic belt (EAVPB), demarcating the APTZ into internal (near-continental) and external (near-oceanic) zones. Two stages of the strike-slip related tectogenesis were established: orogenic-constructive (Jurassic–to–Late-Cretaceous) and riftogenic-destructive (Late Cretaceous–to–Cenozoic). The riftogenic destruction broke the previously formed orogenic foldedthrust structures, thus causing the EAVPB magmatic succession from intracrustal intrusions (Early Cretaceous) to volcanics (Late-Cretaceous-to-Cenozoic). An increase in the crustal destruction during the end of Cretaceous to Cenozoic resulted in the formation of epicontinental sedimentary basins and deep-sea riftogenic depressions of marginal seas. The structure-forming flow of the APTZ crustal masses occurred in the SSW 180–250° direction being opposite and obliquely opposite towards the NNW subduction direction of oceanic plates.
Conclusion. The kinematic disconformity as well as the coincidence of the continental crust flow (plate flows) with the direction of inertial-and-equator-oriented forces allowed the author to determine the structuring of the transition zone as a process independent of the geodynamics of oceanic plates and subordinate to the rotational geodynamics of the non-uniformly rotating Earth.
About the Author
V. P. UtkinRussian Federation
159 Century Vladivostok av., Vladivostok, 690022
References
1. Allen C.R. (1962) Circum-Pacific Faulting in the Philippines-Taiwan Region. Geophis. Res., (2), 4795-4812.
2. Argan E. (1935) Tektonika Azii [Tectonics of Asia]. Moscow; Leningrad, ONTI NKTP SSSR, 192 p.
3. Asahiko T., Timothy, Juichiro A. (1992) Photographic Atlas of an Accretionary Prism: Geologic Structures of the Shimanto Belt. Tokyo, University of Tokyo Press, 124 p.
4. Burtman V.S., Luk’yanov A.V., Peive A.V., Ruzhentsev S.V., Suvorov A.I., Trifonov V.G., Koptev V.V., Shcherba I.G. (1963) Horizontal movement along faults, and some methods of their study. Razlomy i gorizontal’nye dvizheniya zemnoi kory [Faults and horizontal movements of the Earth’s crust]. Moscow, Nauka Publ., 29-43. (In Russian)
5. Carey S.W. (1954) The Rheid concept in geotectonics. Bull. Geol. Soc. Austral., 1, 67-117.
6. Cloos E. (1955) Experimental analysis of fracture patterns. Geol. Soc. Am. Bull., 66, 241-256.
7. Crowell J.C. (1974) (Ed. W.R. Dickinson) Origin of late Cenozoic basins in southern California. Tecton. Sediment., SEPM Special Publication, (22), 190-204.
8. Engebretson D.C., Cox A., Gordon R.G. (1985) Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am., Spec. Paper, 206, 1-59.
9. Fournier V., Jolivet L., Huchon P., Sergeyev K.E., Oscorbin L.S. (1995). Neogene strike-slip faulting in Sakhalin and Japan Sea. J. Geophys. Res., 99, 2701-2725.
10. Ganzawa Y. (1987) Fission track ages of volcanic rocks from Cretaceous to Tertiary in the inner belt of Northeast Japan-Okushiri Island, Oga Peninsula and Asahi Mountains. J. Geol. Soc. Japan, 93, 387-401.
11. Hsiao L.-Y., Graham S.A., Tilader N. (2010) Stratigraphy and sedimentation in a rift basin modified by synchronous strike-slip deformation: southern Xialiao basin, Bohai, offshore China. Basin Res., 22, 61-78.
12. Ishikawa M., Otsuki K. (1990) Fold structures and left-lateral ductile shear in the Gosaisho metamorphic belt, Northeast Japan. J. Geol. Soc. Japan, 96, 719-730.
13. Ivanov B.A. (1961) Tsentral’nyi Sikhote-Alinskii razlom. Dokl. Akad. Nauk SSSR, 138(4), 900-903. (In Russian)
14. Kimura G., Sakakibara M., Ofuka H., Ishizuka H., Miyashita S., Okamura M., Melnikov O.A., Leshchenko V. (1992) A deep section of accretionary complex: Susunai Complex in Sakhalin Island, Northwest Pacific Margin. The Island Arc, (1), 166-175.
15. Kiyokawa S. (1992) Geology of the Jdonnappu belt, central Hokkaido. Japan: evolution of a Cretaceous accretionary complex. Tectonics, 11(6), 1180-1206.
16. Kozhurin A.I., Trifonov V.G. (1982) Young strike-slip faults of the Pacific Ocean framing. Geotektonika, (2), 3-18. (In Russian)
17. Lateral’nye tektonicheskie potoki v litosfere Zemli. (2013) [Lateral tectonic flows in the lithosphere of the Earth]. (Ed. M.G. Leonov). Moscow, GEOS Publ., 318 p. (In Russian)
18. Lin A., Miyata T., Wan T. (1998) Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong Peninsula, eastern China. Tectonophysics, (293), 85-104.
19. Maruyama S., Seno T. (1986) Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, (127), 305-329. Mckinstry H.E. (1953) Shears of second order. Am. J. Sci., 251, 401-414.
20. Moody J.D., Hill M.J (1956) Wrench-fault tectonics. Geol. Soc. Am. Bull., 67(9), 1207-1246.
21. Natal’in B.A., Alekseenko S.N. (2009) The structure of the folded basement of the Cretaceous SSB. Sredneamurskii osadochnyi bassein: geologicheskoe stroenie, geodinamika, toplivno-energeticheskie resursy [Middle Amur sedimentary basin: geological structure, geodynamics, and fuel-and-energy resources] (Ed. G.L. Kirillova). Vladivostok, Far Eastern Branch of Russian Academy of Sciences Publ., 286-313. (In Russian)
22. Otofuji Y., Matsuda T., Nohda S. (1985) Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan arc. Nature, (317), 603-604.
23. Otsuki K. (1975) Geology of the Tanakura shear zone and adjacent area. Contrib. Inst. Geol. Paleontol., Tohoku University, 76, 1-71.
24. Otsuki K. (1992) Oblique subduction, collision of microcontinents and subduction of oceanic ridge: their implications on the Cretaceous tectonics of Japan. The Island Arc, (1), 51-63.
25. Peive A.V., Pushcharovsky Yu.M. Theoretical problems of the geology of the oceans. Priroda, (1), 30-41. (In Russian)
26. Pushcharovsky Yu.M. (2004) The Moving Continents. Geotektonika, (3), 3-12. (In Russian)
27. Rol’ sdvigovoi tektoniki v strukture litosfer Zemli i planet zemnoi gruppy. (1997) [The role of a strike-slip-fault tectonics in the structure of the Earth’s lithospheres and terrestrial planets] (Ed. P.S. Voronov). St. Petersburg, Nauka Publ., 592 p. (In Russian)
28. Rozhdestvenskii V.S. (1997) The role of strike-slip faults in the formation of the structure of Sakhalin, hydrocarbon deposits and mineralized zones. Geodinamika tektonosfery zony sochleneniya Tikhogo okeana s Evraziei) (Pod red. B.N. Piskunova). T. 1. Geologiya i geodinamika Sikhote-Alinskoi i Khokkaido-Sakhalinskoi skladchatykh oblastei [Geodynamics of tectonosphere Pacific Ocean and Eurasia couple zone (Ed. B.N. Piskunov). V. 1. Geology and geodynamics of the Sikhote-Alin and Khokkaido-Sakhalin folded regions]. Yuzhno-Sakhalinsk, Dal’nauka Publ., 80-109. (In Russian)
29. Rutland R., William R.A. (1967) A tectonic study of part of the Philippine fault zone. Quart. Geol. Soc., 123(4), 176-192.
30. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A. (1991) Razlomoobrazovanie v litosfere. Zony sdviga [Faulting in the lithosphere. Wrench fault zones]. Novosibirsk, Nauka Publ., 262 p. (In Russian)
31. Silant’ev V.N. (1963) Fujino-Iman shear. Izv. Akad. Nauk USSR. Ser. Geol., (2), 39-49. (In Russian). Stoyanov S.S. (1977) Mekhanizm formirovaniya razryvnykh zon [The mechanism of the formation of discontinuous zones]. Moscow, Nedra Publ., 143 p. (In Russian)
32. Stovas M.V. (1975) Izbrannye trudy [Selected works]. Moscow, Nedra Publ., 155 p. (In Russian)
33. Stroenie dna Okhotskogo morya (1981) [The structure of the bottom of the Sea of Okhotsk] (Eds V.V. Belousov, and G.B. Udintsev). Moscow, Nauka Publ., 176 p. (In Russian)
34. Takahachi M., Saito K. (1997) Miocene intra-arc bending at an arc-arc collision zone, central Japan. The Island Arc, (6), 168-182.
35. Tanabe H., Kano K. (1996) Illite crystallinity study of the Cretaceous Shimanto Belt in the Akaishi Mountains, eastern Southwest Japan. The Island Arc, (5), 56-68.
36. Tektonicheskaya rassloennost’ litosfery i regional’nye geologicheskie issledovaniya (1990) [Tectonic layering of the lithosphere and regional geological studies] (Eds Yu.M. Pushcharovsky, and V.G. Trifonov). Moscow, Nauka Publ., 294 p. (In Russian)
37. The Tancheng-Lujiang wrench fault system (1993) (Ed. J.W. Xu). Chichester, England, John Wiley and Sons Publ., 279 p.
38. Trifonov V.G., Kozhurin A.I. (2010) Study of active faults: Theoretical and applied implications. Geotectonics, 44(6), 510-528 (translated from Geotektonika, (6), 79-98).
39. Utkin V.P. (1978) East Asian global strike-slip fault zone, the volcanic belt and marginal seas. Dokl. Akad. Nauk SSSR, 240(2), 400-403. (In Russian)
40. Utkin V.P. (1980) Sdvigovye dislokatsii i metodika ikh izucheniya [Strike-slip related dislocations and methods of their study]. Moscow, Nauka Publ., 144 p. (In Russian)
41. Utkin V.P. (1985) Geodynamics of the Earth’s crust extensions in the transition zone from the Asian continent to the Pacific Ocean. Geotektonika, (1), 73-87. (In Russian)
42. Utkin V.P. (1987) Sdvigovye dislokatsii i ikh rol’ v proyavleniyakh magmatizma i rudoobrazovaniya Aziatsko-Tikhookeanskoi zony perekhoda. Diss. … dokt. geol.-min. nauk [Strike-slip related dislocations and their role in occurrences of magmatism and ore formation of the AsiaPacific transition zone. Doct. geol. and min. sci. diss.]. Vladivostok, DVGI DVO AN SSSR, 451 p. (In Russian)
43. Utkin V.P. (2005) Structure, geochronology and structuraland-dynamic conditions of the vertical development of the Eastern Sikhote-Alin magmatic-metallogenic belt. Dokl. Akad. Nauk, 404(5), 659-663. (In Russian)
44. Utkin V.P. (2007) The rotational nature of the continental margins’ tectogenesis and the disintegration of the Laurasia and Gondwana supercontinents. Dokl. Akad. Nauk, 416(1), 86-90. (In Russian)
45. Utkin V.P., Mitrokhin A.N., Nevolin P.L. (2016) Strike-slip related continental rifting of the eastern margin of Asia. Litosfera, (4), 5-29. (In Russian)
46. Voronov P.S. (1968) Ocherki o zakonomernostyakh morfologii global’nogo rel’efa Zemli [Essays on the morphology of the global patterns of Earth’s topography]. Leningrad, Nauka Publ., 123 p. (In Russian)
47. Xu J.W., Zhy G., Tong W., Cui K.R., Liu Q. (1987) Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the north-west of the Pacific Ocean. Tectonophysics, 134(4), 273-310.
48. Zharov A.E. (2004) Geologicheskoe stroenie i mel-paleogenovaya geodinamika Yugo-Vostochnogo Sakhalina [Geological structure and the Cretaceous-Paleogene geodynamics of the Southwestern Sakhalin]. Yuzhno-Sakhalinsk, Sakhalinskoe Knizhnoe Izd., 192 p. (In Russian)
Review
For citations:
Utkin V.P. Strike-slip related tectogenesis and structure-forming flow of crustal masses of the Asia-Pacific transition zone. LITHOSPHERE (Russia). 2019;19(5):780-799. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-5-780-799