On the participation of natural salts in alkaline magmatism. Article 2. Standard objects and geological aspects of the model
https://doi.org/10.24930/1681-9004-2019-19-4-499-518
Abstract
Research subject. The author suggests a new geologic and genetic model for alkaline magmatism. This model considers the saline complexes that are located along the paths of ascending deep magmas as additional sources of alkaline and volatile components. An analysis of the geological and genetic probability of the participation of salts in alkaline magmatism is based on the study of the space-time relationships of natural salts and alkaline magmatic complexes performed using global and regional data. This problem is investigated in a series of three articles. The first article was devoted to characterization of geological prerequisites and their tectonic types. This article sets out to describe the geological aspects of salt-magmatic interactions in greater detail. To this end, the standard alkaline-salt associations of three tectonic types - Italian (cover-fold type), Upper-Rhine (rift type) and North-West-African (passive-margin type) - were characterized.
Methods. The most significant tectonic, lithological and petrological features of all the aforementioned types were described, along with the evolution of space-time relationships of alkaline magmatic complexes. The features confirming the participation of saline complexes in alkaline magmatism were generalized.
Results. It is found that the presence of salt-bearing strata in deep zones of the Earth’s crust along the ascending routes of mantle magmas is a geological phenomenon. The places of their intersection are favourable for the injection of hot magmas and the formation of interstitial chambers, which form centres for interaction between these magmas and the components of saline (salt-carbonate) complexes. The assimilation of the alkaline and volatile components localized in these complexes can contribute to the formation of highly enriched (supersaturated) melt mixtures and a subsequent alkaline specialization of the magmas.
Conclusion. On the basis of the data obtained, a geological model of salt-magmatic interactions has been developed. The author’s next article will discuss the genetic aspects of the proposed model along with a possible role of various alkaline and volatile halophilic components in the formation of alkaline magmas. In addition, a comparative analysis of various geological and genetic models of alkaline pet-rogenesis will be provided.
Keywords
About the Author
G. A. BelenitskayaRussian Federation
Galina A. Belenitskaya
74 Sredny av., St.Petersburg 199106
References
1. Rouchy J.-M. (1982) La genese des evaporites Messiniennes de Mediterrannee. Paris: Editions du Museum national d’Histoire naturelle, 267 p.
2. Aiuppa A., Baker D.R., Webster J. (2009) (Ed. Guest). Halogenes in Volcanic Systems and Their Environmental Impacts. Spec. Iss. Chem. Geol., 263(1-4), 163 p.
3. Shchelochnye porody [Alkaline rocks]. (1976) (Ed. H. Serensen). Moscow, Mir Publ., 400 p. (In Russian)
4. Alagna K.E., Peccerillo A., Martin Silvana, Donati C. (2010) Tertiary to Present evolution of orogenic magmatism in Italy. J. Virtual Explorer, 36(18). doi: 10.3809/jvirtex.2010.00233.
5. Tektonicheskaya karta Sredizemnogo morya [Tectonic map of the Mediterranean Sea]. Masshtab 1 : 5 000 000 (N.A. Bogdanov, V.E. Hain, V.D. Chekhovich, N.V. Koronovskii, M.G. Lomize et al.). (1994) Moscow, VIEMS Publ. (In Russian)
6. Alkaline Rocks and Carbonatites of the World. Part 1: North and South America. (1987) A.R. Woolley. London, Hardcover, 216 p.
7. Tsypukova S.S., Vladykin N.V. (2008) Petrogeokhimicheskie osobennosti shchelochnogo vulkanogennogo karbonati-tovogo kompleksa Kaizershtul’ [Petrochemical features of the Kaiserstuhl alkaline volcanogenic carbonatite complex]. Shkola “Shchelochnoi magmatizm Zemli”. http://geo.web.ru/conf/alkaline/2008/Tsypunova.htm. (In Russian)
8. Part 2: Former USSR. (1995) L.N. Kogarko, V.A. Kononova, M.P. Orlova, A.R. Woolley. London Chapman & Hall, 226 p.
9. Vysotskii E.A., Garetskii R.G., Kislik V.Z. (1988) Kalienosnye basseiny mira [Potassium-bearing basins of the world]. Minsk, Nauka i tekhnika, 387 p. (In Russian)
10. Part 3: Africa. (2001) A.R. Woolley. London, Hardback, 372 p.
11. Yampol’skii M. (2000) Vesuvius. Moscow, Nablyudatel’, 95-110. (In Russian)
12. Belenitskaya G.A. (1998) Halogen-bearing basins. Litogeodinamika i minerageniya osadochnykh basseinov [Lithogeodynamics and minerogenetic of sedimentary basins] (Ed. A.D. Shcheglov). St.Petersburg, VSEGEI Publ., 220-320. (In Russian)
13. Yunov A.Yu. (1980) Structure, evolution, and oil-and gas potential of continental margins of West Africa and East Asia. Tektonika Sibiri [Tectonics of Siberia]. IX, Moscow, Nauka Publ., 127-139. (In Russian)
14. Belenitskaya G.A. (2016) Salt Tectonics at the Margins of Young Oceans. Geotectonics, 50(3), 244-256.
15. Ziegler P.A., Horvath F. (Eds.). (1996) Peri-Tethys Memoir 2: Structure and Prospects of Alpine Basins and Forelands. Mem. Mus. nation. Hist. nat. Paris, 170, 511 p.
16. Belenitskaya G.A. (2017) Salt in the Earth’s crust: distribution and kinematic history. Litosfera, 17(3), 5-28. (In Russian)
17. Belenitskaya G.A. (2018) On the participation of natural salts in alkaline magmatism. Article 1. Natural salt-alkaline associations. Litosfera, 18(2), 153-176. DOI: 10.24930/1681-9004-2018-18-2-153-176.
18. Belenitskaya G.A., Petrov O.V., Sobolev N.N. (Otv. Red) (2015) Rifovye, solenosnye i chernoslantsevye formatsii Rossii [Reef, saliferous and black shale formations of Russia]. St.Petersburg, VSEGEI Publ., 624 p. (In Russian)
19. Bogatikov O.A., Kononova V.A. (1999) Magmatic “window” to the Earth’s depths. Priroda (5), 17-24. (In Russian)
20. Borodin L.S. (1994) Genetic types and geochemical features of mantle-crust carbonatite formations. Geokhimiya (12), 1683-1692. (In Russian)
21. Busson G. (1982) Le Trias comme periode salifere. Geologische Rundschau, 71(3), 857-880.
22. Chelazzi L., Bindi L., Olmi F., Menchetti S., Peccerillo A., Conticelli S. (2006) A lamproitic component in the high-K calc-alkaline volcanic rocks of the Capraia Island, Tuscan Magmatic Province: evidence from clinopyroxene crystal chemical data. Per. Mineral, 75(2-3), 75-94.
23. Cramez Carlos (2014) Salt Tectonics. Short Course. Univer-sidade Fernando Pessoa Porto, Portugal. http://homep-age.ufp.pt/biblioteca/SaltTectonicsNovo.htm For G. (1989) Osnovy izotopnoi geologii [Principles of isotope geology]. Moscow, Mir Publ., 590 p. (In Russian)
24. Frolov A.A., Tolstov A.V., Belov S.V. (2003) Karbonati-tovye mestorozhdeniya Rossii [Carbonatite deposits of Russia]. Moscow, NIA-Priroda Publ., 494 p. (In Russian)
25. Glavneishie provintsii i formatsii shchelochnykh porod [Major provinces and formations of alkaline rocks]. (1974) (Chief ed. L.S. Borodin). Moscow, Nauka Publ., 376 p. (In Russian)
26. Hain V.E. Regional’naya geotektonika [Regional geotectonics]. Vol. 2. (1977) Vneal’piiskaya Evropa i Zapadna-yaAziya [Extra-Alpine Europe and West Asia]. Moscow, Nedra Publ., 359 p. Vol. 4. (1984) Al’piiskii Sredizem-nomorskii poyas [Alpine Mediterranean belt]. Moscow, Nedra Publ., 344 p. (In Russian)
27. Karbonatity [Carbonatites]. (1969) (Ed. O. Tattl, Dzh. Git-tins). Moscow, Mir Publ., 487 p. (In Russian)
28. Karbonatity i kimberlity (vzaimootnosheniya, minerageniya, prognoz) [Carbonatites and kimberlites (relationships, minerageny, forecast)]. (2005) (A.A. Frolov, A.V. Lapin, A.V. Tolstov, N.N. Zinchuk, S.V. Belov, A.A. Burmistrov). Moscow, NIA-Priroda Publ., 540 p. (In Russian)
29. Karta razmeshcheniya i mineragenicheskoi specializa-tsii shchelochnykh magmaticheskikh kompleksov Ros-sii [Map of location and mineragenic orientation of alkaline igneous complexes of Russia]. (1995) Masshtab 1 : 10 000 000. (Eds. M.P. Orlova, V.I. Krasnov). St.Petersburg, Kartfabrika VSEGEI Publ. (In Russian) Kogarko L.N. (1977) Problemy genezisa agpaitovykh magm [Problems of agpaitic magma genesis]. Moscow, Nauka Publ., 294 p. (In Russian)
30. Kogarko L.N. Asavin A.M. (2009) Potassium magmatism of the World’s ocean (case study of the Atlantic). Geokhimiya, (9), 899-909. (In Russian)
31. Koval’skaya T.N. (2003) Proiskhozhdenie vysokokalievykh vulkanitov Vezuviya (Italiya). Dis. kand. geol-min nauk [Origin of high-potassic volcanic rocks of Vesuvius (Italy). Cand. Geol. and min. sci diss.]. Moscow, Moscow Stat. Univ. Publ., 29 p. (In Russian)
32. Lazarenkov V.G. (1988) Formatsionnyi analiz shchelochnykh porod kontinentov i okeanov [Formation analysis of alkaline rocks of continents and oceans]. Leningrad, Nedra Publ., 236 p. (In Russian)
33. Mazarovich A.O. (2006) Stroenie dna Mirovogo okeana i okrainnykh morei Rossii [Floor structure of the World’s ocean and marginal seas of Russia]. Moscow, GEOS Publ., 192 p. (In Russian).
34. Mazarovich A.O., Frih-Har D.I., Kogarko L.N., Koporu-lin V.I., Rikhter A.V., Akhmet’ev M.A., Zolotarev B.P. (1990) Tektonika i magmatizm ostrovov Zelenogo mysa [Tectonics and magmatism of Cape Verde Islands]. Moscow, Nauka Publ., 246 p. (In Russian)
35. Milanovskii E.E. (1983) Riftogenez v istorii Zemli. Riftogenez na drevnikh platformakh [Riftogenesis in the Earth’s history. Riftogenesis in old platforms]. Moscow, Nedra Publ., 280 p. (In Russian)
36. Peccerillo A., Martinotti G. (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova, 18, 109-117.
37. Pokrovskii B.G. (2000) Korovaya kontaminatsiya mantii-nykh magm po dannym izotopnoi geokhimii [Crustal contamination of mantle magmas on evidence of isotope geochemistry]. Moscow, Nauka Publ., 225 p. (In Russian)
38. Puchkov V.N. (2000) Paleogeodinamika Yuzhnogo i Sredne-go Urala [Paleogeodynamics of Southern and Middle Urals]. Ufa, Gilem Publ., 146 p.
39. Puchkov V.N. (2005) Vezuvii i drugie [Vesuvius and others]. Samizdat. http://samlib.ru/p/puchkow_w_n/vezuviyiokrestnosti.shtml Ot 12.12.15. (In Russian)
40. Ritmann A. (1964) Vulkany i ikh deyatel’nost’ [Volcanoes and their activity]. Moscow, Mir Publ., 438 p. (In Russian)
41. Rouchy J.-M. (1982) La genese des evaporites Messiniennes de Mediterrannee. Paris: Editions du Museum national d’Histoire naturelle, 267 p.
42. Shchelochnye porody [Alkaline rocks]. (1976) (Ed. H. Serensen). Moscow, Mir Publ., 400 p. (In Russian)
43. Tektonicheskaya karta Sredizemnogo morya [Tectonic map of the Mediterranean Sea]. Masshtab 1 : 5 000 000 (N.A. Bogdanov, V.E. Hain, V.D. Chekhovich, N.V. Koronovskii, M.G. Lomize et al.). (1994) Moscow, VIEMS Publ. (In Russian)
44. Tsypukova S.S., Vladykin N.V. (2008) Petrogeokhimicheskie osobennosti shchelochnogo vulkanogennogo karbonati-tovogo kompleksa Kaizershtul’ [Petrochemical features of the Kaiserstuhl alkaline volcanogenic carbonatite complex]. Shkola “Shchelochnoi magmatizm Zemli”. http://geo.web.ru/conf/alkaline/2008/Tsypunova.htm. (In Russian)
45. Vysotskii E.A., Garetskii R.G., Kislik V.Z. (1988) Kalienosnye basseiny mira [Potassium-bearing basins of the world]. Minsk, Nauka i tekhnika, 387 p. (In Russian)
46. Yampol’skii M. (2000) Vesuvius. Moscow, Nablyudatel’, 95-110. (In Russian)
47. Yunov A.Yu. (1980) Structure, evolution, and oil-and gas potential of continental margins of West Africa and East Asia. Tektonika Sibiri [Tectonics of Siberia]. IX, Moscow, Nauka Publ., 127-139. (In Russian)
48. Ziegler P.A., Horvath F. (Eds.). (1996) Peri-Tethys Memoir 2: Structure and Prospects of Alpine Basins and Forelands. Mem. Mus. nation. Hist. nat. Paris, 170, 511 p.
Review
For citations:
Belenitskaya G.A. On the participation of natural salts in alkaline magmatism. Article 2. Standard objects and geological aspects of the model. LITHOSPHERE (Russia). 2019;19(4):499-518. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-4-499-518