Geochemical behavior of chromium in minerals of high-Mg rocks, associated with granitoid massifs of the Urals
https://doi.org/10.24930/1681-9004-2019-19-3-416-435
Abstract
Research subject. High-magnesium rocks associated with the granitoid massifs of the Urals are represented by gabbro-diorites and their melanocratic varieties (hornblendites), as well as by diorites and quartz diorites. These rocks are composed of amphibole porphyrocrists frequently combined with clinopyroxene and phlogopite immersed in a basis of acid plagioclase with interstitial quartz and potassium feldspar. In addition to a high magnesium content of 0.5–0.8 units, these rocks are characterized by extremely high chromium contents of up to 1200 ppm.
Methods. The study of the composition of high-magnesium rocks was performed using an ELAN 9000 inductively coupled plasma mass spectrometer, an SX-100 Cameca electron probe microanalyzer and an energy dispersive device INCAEnergy 450 X-Max 80. The detection limit for Cr2O3 was equal to 0.05 wt. % and 0.2 wt. % for the microanalyzer and the energy dispersive device, respectively.
Results. The two main mineral associations related to magmatic and post-magmatic processes are found to be different in terms of chromium behaviour. The average concentrations of chromium oxide in the minerals from the magmatic association varied within the range (wt. %) of 0.10–0.50, 0.29–0.68, 0.08-0.36 and 0.0–1.6 for different samples of clinopyroxene, amphibole, phlogopite and their variations, respectively. The post-magnetic association included minerals representing the products of postmagmatic (hydrothermal) transformation of pyroxenes and alumina amphibole into low-alumina magnesia hornblende, actinolite, titanite, epidote and muscovite. The transformation of chromospinelide at this stage had been accompanied by exchange processes with silicates, as a result of which the silicates were enriched with chromium. The average concentrations of chromium oxide in the minerals of this association were (wt. %) 0.24–0.80, 1.38–3.08, 1.03 and 3.5 in the samples of amphibole, epidote, titanite and muscovite, respectively.
Conclusion. It is assumed that the crystallization of the early association of iron-magnesium silicates proceeded from aqueous high-magnesium melts. The subsequent post-magmatic change of such silicates led to the development of phases with a similar and occasionally higher chromium content. This fact can be explained by the interaction of silicates with chromite under the conditions of low fluid oxidation, which was insufficient for the formation of magnetite.
Keywords
About the Authors
S. V. PribavkinRussian Federation
Sеrgei V. Pribavkin
15 Akad. Vonsovsky st., Ekaterindurg, 620016
G. A. Кallistov
Russian Federation
Gennady А. Кallistov
15 Akad. Vonsovsky st., Ekaterindurg, 620016
Т. A. Оsipova
Russian Federation
Тatiana А. Оsipova
15 Akad. Vonsovsky st., Ekaterindurg, 620016
I. A. Gottman
Russian Federation
Irina А. Gottman
15 Akad. Vonsovsky st., Ekaterindurg, 620016
E. A. Zin’kova
Russian Federation
Еlena А. Zin’kova
15 Akad. Vonsovsky st., Ekaterindurg, 620016
References
1. Ahmed A.H., Surour A.A. (2016) Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridot-ites by contact metamorphism of granitic intrusions in the Ablah area, Saudi Arabia. J. Asian Earth Sci, 122, 58-79.
2. Armbruster T., Bonazzi C.P., Akasaka V.M., Bermanec V., Chopin C., Giere R., Heuss-Assbichler S., Liebscher A., Menchetti S., Pan Y., Pasero M. (2006) Recommended nomenclature of epidote-group minerals. Eu. J. Miner., 18(5), 551-567.
3. Ashley P.M., Martyn J.E. (1987) Chromium-bearing minerals from a metamorphosed hydrothermal alteration zone in the Archaean of eastern Australia. Neues Jahrbuch fur Mineralogie, Abhandlungen, 157, 81-111.
4. Atherton M.P., Ghani A.A. (2002) Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62, 65-85.
5. Barnes S.J., Roeder P.L. (2001) The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol., 42(12), 2279-2302.
6. Barra F., Gervilla F., Hernandez E., Reich M., Padron-Nav-arta J.A., Gonzalez-Jimenes J.M. (2014) Alteration patterns of chromian spinels from La Cabana peridotite, south-central Chili. Miner. Petrol., 108, 819-83.
7. Bea F., Montero P., Molina J.F. (1999) Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia. J. Geol., 107, 399-419.
8. Bea F., Montero P., Zinger T. (2003) The nature and origin of the granite source layer of Central Iberia: evidence from trace element, Sr and Nd isotopes, and zircon age patterns. J. Geol., 111, 579-595.
9. Buba G., Dobosi G. (2004) Lamprophyre-derived high-K mafic enclaves in Variscan granitoids from the Mecsek Mts. (South Hungary). Neues Jahrbuch fur Mineralogie - Abhandlungen: J. Miner. Geochem., 180(2), 115-147.
10. Castro A., Corretge L.G., De la Rosa J.D., Fernandez C., Lopez S., Garcia-Moreno O., Chacon H. (2003) The appinite-migmatite complex of Sanabria, NW Iberian massif, Spain. J. petrol., 44, 1309-1344.
11. Challis A., Grapes R., Palmer K. (1995) Chromian muscovite, uvarovite, and zinzian chromite: products of regional metasomatism in Northwest Nelson, New Zealand. Can. Miner., 33, 1263-1284.
12. Chashchuhin I.S. (2008) On the nature of chromite mineralization in the dunite-clinopyroxenite complexes of the Urals: a consequence from the composition of the chromium spinel. Ezhegodnik-2007. Ekaterinburg, IGG UrO RAN, 346-352.
13. Chen X., Wang D., Wang X.L., Gao J.F., Shu X.J., Zhou J.C., Qi L. (2014) Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: Geochemistry, petrogenesis and tectonic implications. Lithos, 200-201, 35-48.
14. Deer W.A., Howie A., Zussman J. (1986) An introduction to rock-forming minerals. 17th. Longman Ltd. 528 p.
15. Deer W.A., Howie R.A., Zussman J. (1997) Rock-forming Minerals: Double-Chain Silicates, V. 2B. Geol. Soc. London, 764 p.
16. Devaraju T.S., Raith M.M., Spiering B. (1999) Mineralogy of the archean barite deposit of Ghattihosahalli, Karnataka, India. Can. Miner., 37, 603-617.
17. Farahat E.S. (2008) Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petroge-netic implications. Chemie der Erde, 68, 193-205.
18. Fortey N.J., Cooper A.H., Henney P.J., Colman T., Nancar-row P.H.A. (1994) Appinitic intrusions in the English Lake District. Miner. petrol., 51(2-4), 355-375.
19. Fowler M.B. (1988) Ach’uaine hybrid appinite pipes: evidence for mantle-derived shoshonitic parent magmas in Caledonian granite genesis. Geology, 16, 1026-1030.
20. Fowler M.B., Henney P.J., Darbyshire D.P.F., Greenwood P.B. (2001) Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. J. Geol. soc., 158, 521-534.
21. Fowler M.B., Kocks H., Darbyshire D.P.F., Greenwood P.B. (2008) Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105, 129-148.
22. Giuli G., Bonazzi P., Menchetti S. (1999) Al-Fe disorder in synthetic epidotes; a single-crystal X-ray diffraction study. Amer. Miner., 84(5-6), 933-936.
23. Grapes R.H. (1981) Chromian epidoteand zoisite in kyanite amphibolite, Southern Alps, New Zealand. amer. Miner., 66, 974-975.
24. Grapes R.H., Hoskin P.W.O. (2004) Epidote Group Minerals in Low-Medium Pressure Metamorphic Terranes. Rev. Miner. Geochem., 56, 301-345.
25. Hamidullah S. (2007) Petrography and mineral chemistry as indicators of variations of crystallization conditions in the Loch Lomond and Appin appinite suites, western Scotland. proc. Geol. Assoc. ,
26. Hamidullah S., Bowes D.R., (1987) Petrogenesis of the appinite suite, Appin District, Western Scotland. acta universitatis Carolinae, Geologica, (4), 295-396.
27. Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. (2012) Nomenclature of the amphibole supergroup. amer. Miner., 97, 2031-2048.
28. Kallistov G.A. (2011) petrologiya granitoidov Chelyabisko-go massiva. Dis. kand. geol.-min. nauk [Petrology of granitoids of the Chelyabinsk massif. Cand. geol. and mineral. sci. diss.]. Ekaterinburg, IGG UrO RAN, 23 p. (in Russian)
29. Kallistov G.A. (2014) Duration and age stages of the formation of the Chelyabinsk granitoid batholith. Ezhegod-nik-2013, Proc. IGG. UB RAS, No. 161, 343-349. (in Russian)
30. Kallistov G.A., Osipova T.A. (2017) Geology and geochemistry of synplutonic dykes in the Chelyabinsk granitoid massif, South Urals. Geodynamics and tectonophysics, 8(2), 331-345. (In Russian)
31. Kimball K.L. (1990) Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib. Miner. petrol., 105, 337-346.
32. Kubiinova S., Faryad S.W., Verner K., Schmitz M., Holub F. (2017) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collision-al mantle dynamics during Variscan orogeny in the Bohemian Massif. Lithos, 272-273, 205-221.
33. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D. (2005) An overview of adakite, tonalite-trond-hjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24.
34. McCarro J.J., Smellie J.L. (1998) Tectonic implications of fore-arc magnesian and generation of high-magnesian andesites: Alexander Island, Antarctica. J. Geol. soc. Lond., 155, 269-280.
35. Miller C.F., Stoddard E.F., Bradfish L.J., Dollase W.A. (1981) Composition of plutonic muscovite: genetic implications. Can. Miner., 19, 25-34.
36. Molina Palma J.F., Moreno J.A., Castro A., Rodriguez C., Fershtater G.B. (2015) Calcic amphibole thermobarome-try in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286-305.
37. Molina Palma J.F., Scarrow J.H., Montero P., Bea F. (2009) Petrogenetic significance of Ti-rich amphibole in calc-alkaline mafic to ultramafic rocks: the Variscan appinites of Central Iberia. Contrib. Miner. petrol., 158, 69-98.
38. Murphy J.B. (2013) Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Sci. Rev., 119, 35-59.
39. Nagashima M., Akasaka M., Sakurai T. (2006) Chromian epidote in omphacite rocks from the Sambagawa meta-morphic belt, central Shikoku, Japan. J. Miner. Petrol. Sci., 101(4), 157-169.
40. Okamoto A., Toriumi M. (2005) Progress of actinolite-form-ing reactions in mafic schists during retrograde metamorphism: an example from the Sanbagawa metamorphic belt in central Shikoku, Japan. J. Metamorph. Geol., 23, 335-356.
41. Pan Y., Fleet M. (1989) Cr-rich calc-silicates from the Hem-lo area, Ontario. Can. Miner., 27, 565-577.
42. Pavlov N.V. (1949) Khimicheskii sostav khromshpinel-idov v svyazi s petrograficheskim sostavom porod ul’traosnovnykh intruzivov [Chemical composition of chromospinel in connection with the petrographic composition of rocks of ultrabasic intrusions]. Moscow, Nauka Publ., 88 p. (In Russian)
43. Pitcher W.S. (1997) The Nature and Origin of Granite. London, Chapman and Hall, 395 p.
44. Pribavkin S.V. (2000) petrologiya osnovnykhporod v gran-itoidakh Shabrovskogo i Shartashskogo massivov. Dis. kand. geol.-min. nauk [Petrology of the basic rocks in the granitoids of the Shabry and Shartash massifs. Cand. geol. and mineral sci. diss.]. Ekaterinburg, IGG UrO RAN, 28 p. (In Russian)
45. Pribavkin S.V., Pushkarev E.V. (2011) The age of late oro-genic granitoids of the Urals based on U-Pb isotope dating of zircons (exemplified by the Shartash and Shabry massifs). Dokl. Akad. Nauk, 438(1), 627-631. (In Russian)
46. Pribavkin S.V., Zamyatin D.A. (2010) Chromium-bearing epidote from the melanodiorites of the Shabrovsky Massif, Middle Urals. Ezhegodnik-2009, Proc. IGG. UB RAS, No. 157, 173-180. (In Russian)
47. Pushkarev E.V., Osipova T.A. (1993) Inclusions of granitoids in the bask rocks of the Shabrovsky massif. Ezhe-godnik-1992. Ekaterindurg, IGG UrO RAN, 44-47. (in Russian)
48. Qian Q., Hermann J. (2010) Formation of High-Mg Dior-ites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths. J. Petrol., 57(7), 1381-1416.
49. Rock N.M.S. (1991) Lamprophyres. Glasgow, Blackie, 284 p.
50. Rybnikova Z.P., Svetov S.A. (2014) Geochemistry of accessory chromites in mesoarchean komatiites from central karelia (sovdozero structure). Tr. Karel’skogo nauchno-go tsentra RAN, (1), 158-166. (In Russian)
51. Sabatier H. (1991) Vaugnerites: Special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. Enclaves in Granite Petrology. Ed. by J. Didier, B. Barbarin. Amsterdam, Elsevier, 63-81.
52. Sanchez-Vizcaino V.L. (1995) The behavior of Cr during metamorphism of carbonate rocks from the Nevado-Fi-labride complex, Betic Cordilleras, Spain. Can. Miner., 33, 85-104.
53. Scarrow J.H., Bea F., Montero P., Molina J.F. (2009a) Shos-honites, vaugnerites and potassic lamprophyres: similarities and differences between ‘ultra’-high-K rocks. Earth and Environmental Sci. Transactions of the Royal Soc. Edinburgh, 99, 1-17.
54. Scarrow J.H., Molina Palma J.F., Bea F., Montero P. (2009b) Within-plate calc-alkaline rocks: Insights from alkaline mafic magma-peraluminous crustal melt hybrid ap-pinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64.
55. Sharpenok L.N., Kostin A.E., Kukharenko E.A. (2013) TAS-Diagram the sum of alkalis-silica for chemical classification and diagnostics of plutonic rocks. Regional’naya ge-ologiya i metallogeniya, 56, 40-50 p. (In Russian)
56. Shiraki K. (1997) Geochemical Behavior of Chromium. Res. Geol., 47(6), 319-330.
57. Simon F.O., Rollinson C.L. (1976) Chromium in rocks and minerals from the southern California batholith. Chem. Geol., 17, 73-88.
58. Sisson T.W. (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol., 117(1-4), 331-344.
59. Smirnov V.N., Ivanov K.S., Larionov A.N. (2014) The U-Pb SIMS zircon age and geodynamic conditions of formation of granitoides of the Verkhisetsk batholith, the eastern slope of the Middle Urals. Stratigr. Geol. Corre., 22(6), 26-44. (In Russian)
60. Speer J.A. (1984) Micas in igneous rocks. Micas. Rev. Miner., 13, 299-356.
61. Stern R.A., Hanson G.N., Shirey S.B. (1989) Petrogenesis of mantle-derived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in South-western Superior Province. Can. J. Earth Sci., 26, 1688-1712.
62. Tatsumi Y., Furukawa Y. (2003) Slab melting in sanukitoid magma formation: Geophysical and geochemical constrains. Geophys. Res. Abstracts, 5(08022).
63. Tatsumi Y., Ishizaka K. (1982) Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan: I. Petrographical and chemical characteristics. Earth Planet. Sci. Lett., 60(2), 293-304.
64. Tiepolo M., Tribuzio R., Langone A. (2011) High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). J. Petrol., 52, 1011-1045.
65. Treloar P.J. (1987) Chromian muscovites and epidotes from Outokumpu, Finland. Miner. Mag., 51, 593-599.
66. Ye H.-M., Li X.-H., Li Z.-X., Zhang C.-L. (2008) Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau: implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondw. Res., 13, 126-138.
67. Zin'kova E.A., Fershtater G.B. (1999) Gabbroids and dio-rites of the Verkhisetsk Massif: possible protolith of the tonalite-granodiorite series. Ezhegodnik-1998, Ekaterinburg, IGG UrO RAN, 110-1150. (In Russian)
68. Zin’kova E.A., Montero P., Bea F. (2017) On the U-Pb age of zircons from leucogranites of the Sokol Kamen of the Verkhisetsk Massif (Middle Urals). Ezhegodnik-2016. Proc. of the Institute of Geol. and Geochem. UB RAS, No. 164, 264-268. (In Russian)
Review
For citations:
Pribavkin S.V., Кallistov G.A., Оsipova Т.A., Gottman I.A., Zin’kova E.A. Geochemical behavior of chromium in minerals of high-Mg rocks, associated with granitoid massifs of the Urals. LITHOSPHERE (Russia). 2019;19(3):416-435. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-3-416-435