Preview

LITHOSPHERE (Russia)

Advanced search

The substitution mechanism of Au in In-, Fe- and In-Fe-bearing synthetic crystals of sphalerite, based on the data from EPMA and LA-ICP-MS study

https://doi.org/10.24930/1681-9004-2019-19-1-148-161

Abstract

Research subject. Sphalerite (ZnS) is a widespread mineral that can be found in various depositional environments. During formation, this mineral can accumulate minor and trace impurities, with gold being one of the most valuable component. The issue of the chemical state of Au in sphalerite has been much discussed recently.

Methods. Samples of In-, Fe- and In-Febearing sphalerite with a composition ranging from 0 to 2.5 mol.% In2S3 and 0 – 40 mol.% FeS were synthesized in an Ausaturated system using gas transport and salt flux techniques. The resulting products were subsequently investigated using EPMA and LA-ICP-MS. Results. All the elements under investigation are found to be homogeneously distributed within the sphalerite matrix. After quenching, sphalerite is shown to retain Au. Our data indicates that the observed increase in Au concentration is caused by the presence of In (up to 1.02 wt % Au) and, to a lesser extent, by that of Fe (up to ≈600 ppm Au). These elements substitute Zn in the crystal structure of sphalerite following the scheme Au+ + In3+(Fe3+) ↔ 2Zn2+, which is in good agreement with previous data obtained using the XAS method.

Conclusions.A higher sulphur fugacity in the system leads to a more significant accumulation of Au in sphalerite. The concentration of Au in pure sphalerite does not exceed 10 ppm under our experimental conditions and does not depend on the activity of sulphur in the system.

About the Authors

D. E. Tonkacheev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation
35 Staromonetnyi lane, Moscow 119017



D. A. Chareev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS; Institute of Experimental Mineralogy RAS; Institute of Physics and Technology. Ural Federal University, Ekaterinburg; Kazan Federal University, Kazan
Russian Federation

35 Staromonetnyi lane, Moscow 119017

4 Akad. Osip’yan st., Moscow district, Chernogolovka 142432



V. D. Abramova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation
35 Staromonetnyi lane, Moscow 119017



E. V. Kovalchuk
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation
35 Staromonetnyi lane, Moscow 119017



I. V. Vikentyev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation
35 Staromonetnyi lane, Moscow 119017



B. R. Tagirov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS
Russian Federation
35 Staromonetnyi lane, Moscow 119017



References

1. Asadi H.H., Voncken J.H.L., Hale M. (1999) Invisible gold at Zarschuran, Iran. Econ. Geol. 94, 1367-1374

2. Ballhaus C., Bockrath C., Wohlgemuth-Ueberwasser C., Laurenz V., Berndt J. (2006). Fractionation of the noble metals by physical processes. Contrib. Mineral. Petrol., 152, 667-684.

3. Bortnikov N.S., Cabri L., Vikent’ev I.V., McMahon G., BogdanovYu.A. (2000) Invisible gold in sulfides from recent submarine hydrothermal mounds. Dokl. Earth Sci., 373(5), 863-866.

4. Chareev D.A. (2016) General principles of the synthesis of chalcogenides and pnictides in salt melts using a steadystate temperature gradient. Cristallografiya, 61(3), 506-511. (In Russian)

5. Chareev D.А., Volkova O.S., Geringer N.V., Koshelev A.V., Nekrasov A.N., Osadchii V.O., Osadchii E.G., Filimonova O.N. (2016) Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient. Cristallografiya, 61(4), 682-691. (In Russian)

6. Сhareev D.A., Osadchii V.O., Shiryaev A.A., Nekrasov A.N., Koshelev A. V., Osadchii E.G. (2017) SingleCrystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness. Phys. Chem. Min., 44, 287-296

7. Cook N.J., Ciobanu C.L., Pring A. Skiner W., Shimizu M., Danushevsky L., Melcher F. (2009) Trace and minor elements in sphalerite. Geochim. Cosmohim. Acta, 73, 4761-4791.

8. Filimonova O.N., Trigub A.L., Tonkacheev D.E., Nickolsky M.S., Kvashnina K.O., Chareev D.A., Chaplygin I.V., Kovalchuk E.V., Lafuerza S., Tagirov B.R. (2019) Substitution mechanism in In, Au, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic and natural minerals Min. Mag. (accepted) Fraley K.L., Frank M.R. (2014) Gold solubilities in bornite, intermediate solid solution, and pyrrhotite at 500°C to 700°C and 100MPa Econ. Geol., 109, 407-418.

9. Johan Z. (1998) Indium and germanium in the structure of sphalerite: an example of the coupled substitution with copper. Min Petr., 39(3), 211-229.

10. Lappe F., Niggli A., Nitsche R., White J.R. (1962) The crystal structure of In2ZnS4. Z. Krist., 117(2-3), 146-152.

11. Maslennikov V.V., Maslennikova S.P., Large R.R., Danyushevsky L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Econ. Geol., 104, 1111-1141.

12. Murakami H., Shunso I. (2013) Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geo Rev, 53, 223-243

13. Osadchii V.O. (2016) Trivalent iron in the structure of sphalerite. Zapiski molodezhnoy konferentsii “Lomonosov-2016” [Proc. Y Sci Conf “Lomonosov-2016”], Moscow, Max-Press Publ. https://lomonosov-msu.ru/archive/Lomonosov_2016/data/section_6_8355.htm (In Russian)

14. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom., 26, 2508-2518.

15. Tonkacheev D.E., Chareev D.A., Abramova V.D., Yudovskaya M.A., Minervina E.A., Tagirov B.R., (2015) Sphalerite as a matrix for noble, non-ferrous metals and semimetals: A EPMA and LA-ICP-MS study of synthetic crystals. Proc. 13th Biennial SGA Meeting, Nancy, France, 2, 847-850.

16. Vikentyev I.V. (2015) Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals. Geol. Ore Dep., 57(4), 237-265 .

17. Vikentyev I.V., Yudovskaya M.A., Mokhov A.V., Kerzin A.L., Tsepin A.I. (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, Southern Urals, Russia. Canad. Mineral., 42, 651-665.

18. Wilson S.A., Ridley I., Koenig A.E. (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At om. Spectrom., 17, 406-409.


Review

For citations:


Tonkacheev D.E., Chareev D.A., Abramova V.D., Kovalchuk E.V., Vikentyev I.V., Tagirov B.R. The substitution mechanism of Au in In-, Fe- and In-Fe-bearing synthetic crystals of sphalerite, based on the data from EPMA and LA-ICP-MS study. LITHOSPHERE (Russia). 2019;(1):148-161. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-1-148-161

Views: 1027


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)