Preview

LITHOSPHERE (Russia)

Advanced search

Mineralogy, geochemistry and age of metacarbonate-silicate rocks of the Ilmenogorsky complex

https://doi.org/10.24930/1681­-9004­-2019­-19-­1­-92­-110

Abstract

Research subject. This paper presents the results of a series of mineralogical, petrological, geochemical and isotope­chronological studies carried out to investigate metacarbonate­silicate rocks in the area of Ishkul Lake, the Ilmenogorsky complex.

Materials and methods. The microprobe analysis of the composition of minerals was performed using a REMMA­202M scanning microscope equipped with a microanalyzer. The content of major, trace and rare­earth elements (REE) was determined using a mass spectrometer ICP­MS. The U­Pb age of zircons was obtained by a microprobe SHRIMP II. The content of REE in zircons was determined by an ion probe CAMECA IMS­4F.

Results. The studied metacarbonate­silicate rocks are shown to be represented by spinel­forsterite­calcite, diopside­scapolite­calcite and clinopyroxenite varieties with a di verse range of minerals, including diopside, calcite, forsterite, spinel, scapolite, anorthite, enstatite, alumoenstatite, augite, fassaite, tschermakite, pargasite, hornblend, tremolite, barium­containing feldspar, celsian, phlogopite, graphite, titanite, fluorapatite, picroilmenite, pyrrhotite, pentlandite, sphalerite, violarite, gersdorffite, maucherite. In terms of petrochemical properties, the metacarbonate­silicate rocks under study are characterized by significant variations in the content of SiO2, CaO, MgO at a Ca/Mg ratio of 1.4–8.2, as well as by increased Ni and Cr content, low ratios of Sr/Ba, Th/U, Zr/Hf and Nb/Ta. The small ΣREE amounts of 6–25 ppm (rarely up to 70–72 ppm) correspond to sedimentary formations with a significant amount of ultrabasic material.

Conclusions. The specific features of the composition of olivine, spinel, ilmenite, as well as the titanium content in the early generation zircon indicate the formation (transformation) of spinel­forsterite­calcite rocks at t = 830–850°C. According to the established specifics of REE distribution and the Th/U ratio, the early generation zircons refer to the granulite type zircons, while the late generation zircons correspond to those of transformed syenites­miaskites and various metasomatites. The formation (transformation) of the rocks is found to correspond to the following age stages: PR1 (1720–1780 Ma) ­ “granulite” metamorphism; D1–C (345–399 Ma) – metasomatic transformations caused by the formation of alkaline rocks associated with rifting processes; P1 (282 Ma) – tectonic­metasomatic transformations caused by shear processes.

About the Authors

P. M. Valizer
Ilmen State Reserve
Russian Federation
Miass 456317



S. V. Cherednichenko
Ilmen State Reserve
Russian Federation
Miass 456317



A. A. Krasnobaev
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS,
Russian Federation
15 Akad. Vonsovsky st., Ekaterinburg 620016



References

1. Bagdasarov Yu.A. (1990) On the main petrochemical and geochemical features of carbonatites of a linear type and conditions for their formation. Geokhimiya, (8), 1108­1119. (In Russian)

2. Bagdasarov Yu.A. (2014) On some conditions for the formation of carbonatites of a linearly cracked type. Litosfera, (4), 113­119. (In Russian)

3. Bazhenov A.G., Belogub E.V., Lennykh V.I., Rasskazova A.D. (1992) Selyankinsky block of Ilmeny­Vishnyevye mountains. Ufimskaya shirotnaya struktura Urala. Putevoditel’ ekskursii po dokembriiskim tolshcham Il’meno-Vishnevogorskomu shchelochnomu kompleksu i mestorozhdeniyam poleznykh iskopaemykh [Ufa latitudinal structure of the Urals. Guide excursions to Precambrian strata, Ilmeno­Vishnevogorsky alkaline complex and deposits]. Miass: Geotour Publ, 10­32. (In Russian)

4. Belousova E.A., Griffin W.L., O’Reilly S.V., Fisher N.I. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Miner. Petrol., (143), 602­622.

5. Brey G.P., Köhler T. (1990) Geothermobarometry in fourphase lherzolites. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol., 31(6), 1353­1378.

6. Dick J.B., Bullen T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine­type peridotites and spatially associated lavas. Contrib. Miner. Petrol., 86(1), 54­76.

7. Dubinina E.V., Valizer P.M. (2009) Mineralogy of scapolite­bearing rocks of the Ilmenogorsk complex in the South Urals. Ural’skii mineralogicheskii sbornik, 16, Miass: IMin UrO RAN, 86­96. (In Russian)

8. Essene E.J., Claflin C.L., Giorgetti G., Mata P.M., Peacor D.R., Arkai P., Rathmell M.A. (2005) Two­, threeand flour­feldspar assemblages with hyalophane and celsian: implications for phase equilibria in BaAl2Si2O8–CaAl2Si2O8–NaAlSi3O8–KAlSi3O8. Eur. J. Miner., 17(4), 515­535.

9. Fabries J. (1979) Spinel­olivine geothermometry in peridotites from ultramafic complexes. Contrib. Miner. Petrol., 69(4), 329­336.

10. Fedotova A.A., Bibikova E.V., Simakin S.G. (2008) Geochemistry of zircon (ion microprobe data) as an indicator of the genesis of the mineral at geochronological studies. Geokhimiya, (9), 980­997. (In Russian)

11. Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W. (2009) Distinquishing magmatic zircon from hydrothermal zircon: a case study from the Gidinburg high­sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem. Geol., 259, 131­142.

12. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J. (2007). Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35(7), 643­646.

13. Hoskin P.W.O. (2005) Trace­element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Сosmochim. Acta, 69(3), 637­648.

14. Hoskin P.W.O., Schaltegger U. (2003) The composition of zircon igneous and metamorphic petrogenesis. Rev. Miner. Geochem., 53(1), 27­62.

15. Ivanov K.S. (2011) On the nature of carbonatites of the Urals. Litosfera, (1), 20­33. (In Russian)

16. Kaulina Т.V. (2010) Obrazovanie i preobrazovanie tsirkona v polimetamorficheskikh kompleksakh [Formation and transformation of а zircon in polymetamorphic complexes]. Apatity: Kol’skii NTs RAN, 144 p. (In Russian)

17. Korinevskii V.G., Korinevskii E.V. (2013) A new type of carbonatites in the Urals. Litosfera, (3), 43­56. (In Russian)

18. Krasnobaev A.A., Valizer P.M., Anfilogov V.N., Medvedeva E.V., Busharina S.V., Murdasova N.M. (2016a) Zirconology of serpentinites of the Nyashevskii massif (South Urals). Dokl. Akad. Nauk, 471(6), 703­707. (In Russian)

19. Krasnobaev A.A., Valizer P.M., Busharina S.V., Medvedeva E.V. (2016b) Zirconology of miaskites of the Ilmeny mountains (South Urals). Geokhimiya, (7), 1­15. (In Russian)

20. Krasnobaev A.A., Valizer P.M., Cherednichenko S.V., Busharina S.V., Medvedeva E.V., Presnyakov S.L. (2013) Zirconology of carbonate rocks (marbles–carbonatites) Il’meno­Vishnevogorsky complex (South Urals). Dokl. Akad. Nauk, 450(1), 76­81. (In Russian)

21. Krasnobaev A.A., Valizer P.M., Rusin A.I., Busharina S.V., Medvedeva E.V., Rodionov N.V. (2011) Zirconology of amphibolites of Selyankino strata of the Ilmeny mountains (South Urals). Dokl. Akad. Nauk, 441(5), 661­665. (In Russian)

22. Letnikova E.F. (2002) Use of geochemical characteristics of carbonate rocks in paleogeodynamic reconstructions. Dokl. Akad. Nauk, 385(5), 672­676. (In Russian)

23. Letnikova E.F. (2005) Geodynamic specificity of carbonate sediments of different geodynamic environments of the north­eastern segment of Paleoasian ocean. Litosfera, (1), 70­81. (In Russian)

24. Levin V.Ya., Ronenson B.M., Samkov V.S., Levina I.A., Sergeev N.S., Kiselev A.P. (1997) Shchelochno-karbonatitovye kompleksy Urala [Alkaline­carbonatite complexes of the Urals]. Ekaterinburg: Uralgeolkom Publ., 272 p. (In Russian)

25. McDonough W.F., Sun S.S. (1995) The composition of the Earth. Chem. Geol., 120(3­4), 223­253.

26. Mel’nik Yu.P., Siroshtan R.I., Radchuk V.V., Ivanova L.I. (1984) Fiziko-khimicheskie usloviya metamorfizma karbonatnykh porod [Physico­chemical conditions of metamorphism of carbonate rocks]. Kiev: Nauk. Dumka Publ., 136 p. (In Russian)

27. Mishkin M.A. (1990) Amphibole geothermobarometer for metabasites. Dokl. Akad. Nauk, 312(4), 944­946. (In Russian)

28. Mitchell R.H. (1978) Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranda carbonatite, São Paulo, Brazil. Amer. Miner., (63), 544­547.

29. Nedosekova I.L., Vladykin N.V., Pribavkin S.V., Bayanova Т.B. (2009) Ilmeno­Vishnevogorsky miaskite­carbonatite complex: origin, ore, material sources (Urals, Russia) Gеol. Rudn. Mestorozhd., 51(2), 157­181. (In Russian)

30. Nedosekova I.L. (2012) The age and substance sources Ilmeno­Vishnevogorsk alkaline complex (Urals, Russia): geochemical and isotopic Rb­Sr, Sm­Nd, U­Pb, Lu­Hf data. Litosfera, (5), 77­95. (In Russian)

31. Obata M. (1980) The Ronda peridotite: garnet­, spinel­, and plagioclase­lherzolite facies and the P-T trajectories of a high­temperature mantle intrusion. J. Petrol., 21(3), 533­572.

32. Perchuk L.L. (1991) Derivation of thermodynamically consistent system of geothermometers and geobarometers for metamorphic and magmatic rocks. Progress in metamorphic and magmatic petrology (Ed. L.L. Perchuk). Cambridge: Cambridge University Press, 93­112.

33. Popov V.A., Makagonov E.P., Nikandrov S.N. (1998) On the new forms of carbonatites in the Urals. Uralskii mineralogicheskii sbornik, 8. Miass: IMin UrO RAN, 240­ 248. (In Russian)

34. Rasskazova A.D., Lennykh V.I., Valizer N.I. (1986) Calciphyres and marbles of the lower strata of Ilmeno­Vishnevogorsky complex. Ezhegodnik-1985. Sverdlovsk: IGG UNTs AN SSSR, 68­71. (In Russian)

35. Rusin A.I., Krasnobaev A.A., Valizer P.M. (2006) Geology of the Ilmeny mountains: situation, problems. Geologiya i mineralogiya il’menogorskogo kompleksa: situatsiya i problemy [Geology and mineralogy of Ilmenogorsky complex: situation and problems]. Miass: IGZ UrO RAN, 3­19. (In Russian)

36. Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol., 151, 413­433.

37. Williams I.S. (1998) U­Th­Pb geochronology by ion microprobe. Applications of microanalytical techniques to understanding mineralizing processes. (Eds M.A. McKibben, W.C. Shanks, W.I. Ridley). Rev. Econom. Geol., (7), 1­35.


Review

For citations:


Valizer P.M., Cherednichenko S.V., Krasnobaev A.A. Mineralogy, geochemistry and age of metacarbonate-silicate rocks of the Ilmenogorsky complex. LITHOSPHERE (Russia). 2019;(1):92-110. (In Russ.) https://doi.org/10.24930/1681­-9004­-2019­-19-­1­-92­-110

Views: 534


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)