——— КРАТКИЕ СООБШЕНИЯ =

УДК 549.1 (470.5)

РАДИАЦИОННО-ЭПИГЕНЕТИЧЕСКИЕ ИЗМЕНЕНИЯ ПОЛИКРАЗА В ГРАНИТНЫХ ПЕГМАТИТАХ АДУЙСКОГО И ЗЕНКОВСКОГО МАССИВОВ НА СРЕДНЕМ УРАЛЕ

© 2009 г. В. И. Попова

Институт минералогии УрО РАН
456317, г. Миасс Челябинской обл., Ильменский заповедник
Е-mail: popov@mineralogy.ru
Поступила в редакцию 04.03.2009 г.

В гранитах Адуйского и Зенковского массивов изменения метамиктных поликразов из гранитных керамических пегматитов приурочены к микротрещинам. Изменения первичного химического состава поликразов проявлены в выносе U и Ti, сорбции воды, обогащении Y, Ta и Nb изменённых участков и зон кристаллов. Поликраз из жил на севере Адуйского массива содержит больше U и Ti, чем поликраз аляскитов Зенковского массива.

Ключевые слова: поликраз, уранополикраз, эвксенит, изменение, гранитный керамический пегматит, Адуйский и Зенковский гранитные массивы, Средний Урал.

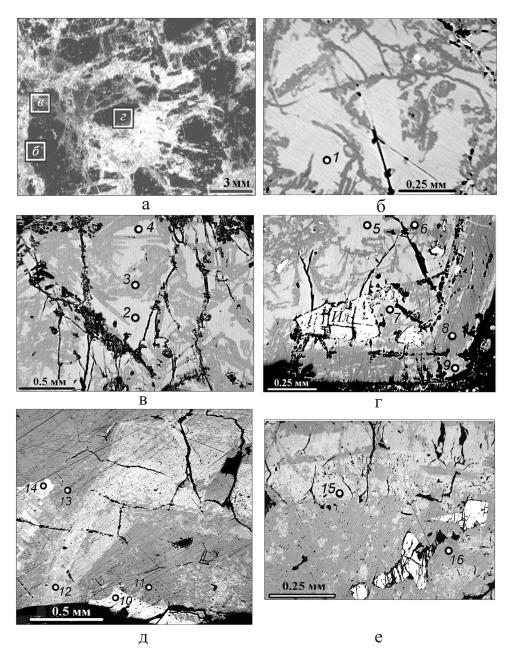
Поликраз и эвксенит впервые были найдены в Норвегии Т. Шерером; эвксенит – в 1840 г., поликраз – в 1844 г. Он же позднее (в 1847 г.) установил их морфологическое сходство, а В. Брёггер в 1906 г. доказал и химическое родство этих минералов [1], т. е. принадлежность их к одному изоморфному ряду. Кроме многочисленных проявлений в гранитных пегматитах Норвегии (более 100), поликраз найден в пегматитах Швеции, США, Канады, Бразилии, Австралии, Японии, России, Казахстана, Китая, Мадагаскара; отмечались находки его и в гранитах, и в щелочных сиенитовых пегматитах [1, 2]. Содержание урана в поликразе составляет 3-17 мас. % UO₂, в уранополикразе - свыше 27 мас. %, поэтому они метамиктные и обычно содержат воду (1-6 мас. % и более). С периферии и по трещинкам в этих минералах отмечались порошковатые и плотные желтовато-бурые корочки изменения и частично - псевдоморфозы иттриевых эшинита и пирохлора.

На Урале поликраз (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)₂O₆ известен в лейкократовых и аляскитовых гранитах и пегматитах Адуйского, Соколовского, Зенковского, Карасьевского, Сосновского, Варламовского и Санарского массивов. Повышенные содержания поликраза (до 60–80 г/т) выявлены в средне- и крупнозернистых аляскитах и гранитных пегматитах Среднего Урала [5–7]. В этих статьях В.А. Чащухиной приведены наиболее полные данные об акцессорном поликразе из аляскитов Зенковского массива. В ранних мелкозернистых аляскитах поликраз не обнаружен, а в поздних, среднезернистых – его содержание достигает 62 г/т. Отмечалось, что поликраз встречается в виде уплощённых по (100) призматических кристаллов размером менее мил-

лиметра и зернистых масс пятнистой окраски: первичная чёрная окраска их преобразуется в коричневую (бурую) при изменении состава. Черный поликраз и его бурая разновидность различаются плотностью (5.28 и 4.86 г/см³), содержаниями Са, Nb, Y, U [6] и имеют разные формулы (табл. 1): черный (ан. 17) по составу отвечает поликразу – $(Y_{0.55}U_{0.23})$ $Ca_{0.16}Ce_{0.05}Th_{0.04}Pb_{0.01}Mg_{0.01})_{1.00}(Ti_{1.20}Nb_{0.59}Ta_{0.05}Al_{0.08})_{1.00}$ $Fe_{0.08})_{2.00}O_6$, а бурый – (ан. 18) – $(Y_{0.59}Ca_{0.50}U_{0.17}Fe_{0.10}$ $Ce_{0.06}Th_{0.03}Pb_{0.02})_{1.47}(Ti_{1.04}Nb_{0.43}Ta_{0.04}Al_{0.02}Si_{0.01})_{1.54}O_6,$ ближе к формуле самарскита: $(Y_{0.39}Ca_{0.34}U_{0.11}Fe_{0.06}$ $Ce_{0.04}Th_{0.02}Pb_{0.01})_{0.97}(Ti_{0.69}Nb_{0.29}Ta_{0.02}Al_{0.01})_{1.01}O_4$ (маложелезистый титаносамарскит). Рентгенограммы прокаленных до 1100°C разновидностей минерала различаются главными отражениями [7]: черный – 2.947Å (что более характерно для самарскита) и бурый – 2.985Å (как для эвксенита-поликраза) (можно предположить случайную путаницу проб при рентгеноструктурном анализе). Отмечалось также, что с поверхности зерна поликраза нередко покрыты желтоватым охристым агрегатом рабдофана, ру-

При доизучении минералогии гранитных пегматитов, локализованных в гранитах Адуйского и Зенковского позднеорогенных массивов верхнепалеозойского возраста [4 и др.], в 4-х жилах из 22-х обследованных встречен поликраз-(Y) в ассоциации с ильменорутилом, ильменитом, ферро- и манганоколумбитом, монацитом-(Ce), самарскитом, фергусонитом-(Y), стрюверитом [3]. В Адуйском массиве поликраз исследован из Режевской жилы (в 5 км к ССЗ от пос. Озерный, на левом берегу р. Реж) и жилы Самарскитовой (в 2.5 км к С от пос. Озерный, на ЛЭП-500), локализованных в биотитовых гранитах. В Зенковском массиве,

Габлица 1. Состав поликраза-(Y) и эвксенита-(Y) и зон их изменения в гранитных пегматитах Адуйского массива


;	H ₂ O	1.2	7.5	15.5	3.0	1.0	20.0	7.5	17.0	6.5	0.9	9.5	7.5	10.5	7.0	3.0	13.0	3.0	3.0		H ₂ O	0.2	1.6	3.6	9.0	0.2	5.4	1.7	4.1	1.4	1.3	2.1	1.6	2.5	1.5	9.0	3.1	9.0	9.0		9.0	
	Сумма	98.34	92.06	84.32	96.54	98.81	77.95	92.21	82.44	93.08	93.59	90.17	91.92	88.95	92.68	96.58	88.88	96.52	96.42	•	0	6.04	6.07	5.94	6.04	5.96	6.12	6.07	5.85	5.96	00.9	5.89	5.78	5.88	6.02	5.78	5.83	9	9		4	
,	00_2	9.75	5.42	8.27	4.73	7.35	5.67	9.52	8.26	7.16	29.65	26.61	17.23	21.29	24.20	21.12	13.70	17.20	13.70		n	0.14	80.0	0.13	0.07	0.10	0.10	0.14	0.13	0.11	0.43	0.39	0.25	0.33	0.37	0.30	0.21	0.23	0.17		0.11	
	ThO_2	3.04	09.0	0.82	09.0	09.0	3.63	3.10	0.79	ı	3.72	3.21	3.01	2.40	2.08	3.62	1.07	3.12	2.76	•	Th	0.04	0.01	0.01	0.01	0.01	0.07	0.05	0.01	I	90.0	0.05	0.04	0.04	0.03	0.05	0.02	0.04	0.03		0.02	
0	SiO_2	ı	1	ı	ı	ī	1	1	ı	ı	1.79	2.10	I	1.31	1.45	ı	I	ī	0.10		Si	1	I	ı	1	ı	ı	1	ı	ı	0.12	0.14	1	60.0	0.10	1	1	1	0.01		1	
;	Yb_2O_3	2.29	1.89	1.65	1.42	2.10	1	1	1.83	2.26	ı	1	2.55	1.57	3.86	1	ı	1	ı	иона)	Yb	0.05	0.04	0.04	0.03	0.04	ı	ı	0.04	0.05	1	ı	0.05	0.03	80.0	ı	ı	ı	1		ı	
%	Er_2O_3	1.41	1.34	0.91	0.50	2.07	0.78	1	1.09	1.10	ı	1	1.31	1.51	1.98	1	ı	1	ı	6 (на 3 катиона)	Ē	0.03	0.03	0.02	0.01	0.04	0.02	ı	0.02	0.02	1	ı	0.03	0.03	0.04	ı	I	1	1	2 катиона	1	
Содержание, мас. %	H02O3	1	ı	ı	I	0.91	ı	ı	I	1.03	ı	ı	ı	ı	ı	ı	ı	1	I	мул AB_2O_0	Ho	1	ı	ı	ı	0.02	ı	ı	ı	0.02	I	I	1	Ī	ı	ı	1	I	1 1	т АВО₄ (на	1	
Содерж	Dy_2O_3	1.33	2.25	1.83	1.60	2.76	1.65	1.04	1.26	2.40	ı	1	2.08	1.09	1.22	1.69	1.33	1	ı	Коэффициенты формул AB ₂ C	Dy	0.03	0.05	0.04	0.03	0.05	0.04	0.02	0.03	0.05	1	ı	0.04	0.02	0.03	0.03	0.03	ı	ı	гы формул	1	
	Gd ₂ O ₃	0.97	1.59	0.70	69.0	1.37	1.34	0.78	ı	I	ı	1	ı	ı	ı	ı	06.0	1	ı	Коэффици	PS	0.02	0.03	0.02	0.01	0.03	0.04	0.02	ı	ı	1	ı	ı	1	ı	ı	0.02	1	1	Коэффициенты формул		
;	Y_2O_3	17.83	20.37	16.85	20.55	22.36	13.24	16.22	18.85	20.57	11.51	10.90	12.57	14.24	11.59	12.67	16.24	17.30	20.10		Y	0.61	69.0	0.63	0.72	0.72	0.58	0.59	0.71	0.73	0.40	0.39	0.44	0.53	0.42	0.43	09.0	0.55	0.59	Ko	0.39	
0	Fe ₂ O ₃	1.05	1	0.58	0.50	ı	0.41	0.07	ı	ı	2.02	1.40	1.42	1.72	1.04	2.84	3.72	1.80	2.30		Fe	0.05	0.14	0.03	0.02	ı	0.03	ı	-	1	0.10	0.07	0.15	0.09	0.05	0.14	0.20	80.0	0.10		90.0	
0	CaO	0.70	2.08	1.48	1.03	0.37	1.15	1.69	1.58	0.67	ı	1.78	3.04	1.84	ı	3.95	1.85	2.50	8.50		Ca	0.05	0.14	0.11	0.07	0.02	0.10	0.12	0.12	0.05	1	0.13	0.21	0.14	ı	0.27	0.14	0.16	0.50		0.34	
	Ta ₂ O ₅	14.44	10.01	7.72	24.66	6.77	13.18	14.03	7.82	14.59	ı	1.91	ı	3.01	2.58	9.49	13.03	2.90	2.40	•	Ta	0.25	0.18	0.15	0.44	0.11	0.29	0.26	0.15	0.26	1	0.03	1	90.0	0.05	0.17	0.25	0.05	0.04		0.02	
;	Nb ₂ O ₅	23.75	24.22	22.72	20.47	27.91	22.05	25.43	20.36	21.98	16.69	15.72	24.54	19.58	17.71	19.49	16.15	21.70	17.30	-	qN	69.0	0.70	0.72	0.61	92.0	0.82	0.79	99.0	0.64	0.50	0.47	0.72	0.62	0.56	0.56	0.54	0.59	0.43		0.29	
0	1102	21.78	21.69	20.77	19.79	24.24	14.85	19.44	20.60	21.32	28.21	26.54	21.77	19.39	24.97	21.71	18.89	26.70	25.00		Ti	1.05	1.04	1.10	86.0	1.10	0.92	1.00	1.11	1.07	9	1.33	1.07	1.02	1.28	1.04	0.99	1.20			69.0	
Ñ	ан.	_	7	т	4	5	9		∞	6	10	=	12	13	14	15	16	17*	18*		I	_	7	ж	4	5	9	7	∞	6	10	Π	12	13	14	15	16	17*	*81		18*	

Примечание. 1, 5, 15, 17 — поликраз черный; 2, 9, 12-14 — поликраз черно-коричневый, гидратированный; 3, 8, 16 — поликраз желто-коричневый, интенсивно гидратированный; 4 — эвксенит коричневый (зона в поликразе); 6, 7 — эвксенит желто-коричневый, гидратированный.

В зеленовато-коричневый, гидратированный.

Минералы из жил: 1−9 — Береговая (рис. 1), 10−14 — Режевская (рис. 1 д.), 15−16 — Самарскитовая (рис. 1 е.). Микрозонд ЈХА-733, аналитик Е. И. Чурин, ИМин УрО РАН. Н₂О — расчетная. Стандарты: ильменит, колумбит, ортоклаз, хлорапатит, GdP₂O₁4, ТR, Y₂O3, ThO₂, UO₂. Анализы 17*−18* — из среднезернистых аляскитов Зенковского массива [7]: пересчет наш]; в сумме анализов РЬО 0.7 и 1.1, A1₂O3 0.4 и 0.3, MgO 0.1 и 0.0, TRCeg 2.10 и 2.86, Y₂O3 включает ТRYg (микрозонд ЈХА-5, аналитик В. А. Вилисов). Прочерк — не обнаружено.

92 ПОПОВА

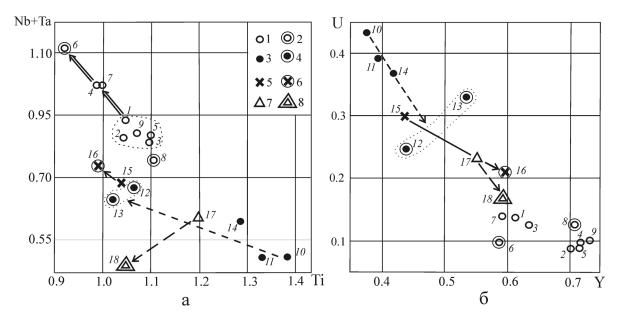


Рис. 1. Форма зерен поликраза-(*Y*) в гранитном пегматите жилы Береговой (а), неоднородность их изменения (б–г) и унаследованность первичной зональности при изменении поликраза-(*Y*) жил Режевской (д) и Самарскитовой (е).

Темное — участки и зоны более интенсивно измененные, белые вростки — ферроколумбит. Цифры — номера анализов в таблице, Ил — ильменит.

по составу сходном с поздними лейкократовыми гранитами Адуйского массива, изучены поликразы из жилы Береговой (в 8 км к СЗ от г. Заречный, на СВ берегу Белоярского вдхр.). Зерна поликраза величиной до 5 мм обычно сложной формы (рис. 1а) вследствие сокристаллизации с соседними минералами, и лишь изредка встречаются отдельные участки собственных граней на удлиненных зернах (идеальные кристаллы, вероятно, были бы толстотаблитчатыми). Черная и коричнево-черная окраска

поликраза сохранилась в отдельных участках среди коричневой с желто-зеленовато-коричневыми пятнами и зонами, которые хорошо видны под микроскопом в отраженном свете (рис. 16–е): макроскопически темноокрашенные участки (на фото светлые) имеют отражение 14–16% по сравнению со светлоокрашенными (8–10% и менее; на фото более темные). Распределение желто- и зеленовато-коричневых участков изменения подчиняется ранней микротрещиноватости поликраза и, реже, под-

Рис. 2. Вариации состава (в форм. ед.) на диаграммах Nb+Ta-Ti (а) и U-Y (б) поликразов разной степени изменения.

Цифры у точек – номера анализов (табл.), линии со стрелками – тренды изменения состава.

1, 2 – жила Береговая, 3, 4 – жила Режевская, 5, 6 – жила Самарскитовая, 7, 8 – акцессорный поликраз-(Y) из аляскитов Зенковского массива. Пунктиром обведены наиболее измененные разности.

черкивает первичные зоны роста кристаллов (рис. 1в, д). Состав разных участков и зон поликраза из этих жил определен на микроанализаторе JXA-733 Geol Superprobe с энергодисперсионной приставкой INCA (табл.). Содержание воды рассчитано по дефициту суммы с определением потери при прокаливании весовым методом; для поликразов жилы Береговой — с последующим рентгеноструктурным анализом минерала.

В составе поликразов разных пегматитовых жил отчётливо проявлена обратная зависимость концентраций Nb + Ta-Ti (рис. 2a) и Y-U (рис. 2б). В жиле Режевской (северной), локализованной в биотитовых гранитах Адуйского массива, поликраз богат Ті и U и беден Та (до уранополикраза в некоторых зонах кристаллов – табл., ан. 10, 11); в существенно измененных участках содержания Ti и U – ниже. Поликраз жилы Самарскитовой (в 4.5 км к ЮЗ от Режевской, также в биотитовых гранитах) содержит ещё меньше Ті и U с той же тенденцией их выноса в участках изменения; в одном из зерен поликраза центральную черную зону его слагает самарскит-(Y) с содержанием 6.48 мас. % TiO₂ и 9.16 мас. % FeO [3], что указывает на близость структур этих минералов. Зерна поликраза жилы Береговой среди аляскитовых гранитов Зенковского массива относительно обеднены Ті и U и обогащены Та; наиболее изменённая разность его по составу приближается к эвксениту (табл., ан. 6). Акцессорный черный поликраз из аляскитов Зенковского массива содержит больше Ті и U и существенно меньше Та; тренд Nb

+ Та-Ті его резко отличается от поликраза пегматитовой жилы Береговой в этом аляските.

В зернах измененного поликраза проявлена унаследованность первичной неоднородности состава. В участках однотипного слабого изменения от внутренних зон к внешним несколько увеличиваются содержания Та и Y (рис. 1, 2, табл. 1); в участках более интенсивного изменения эта тенденция нарушается до обратной. По результатам анализов можно предполагать, что в малоизмененном поликразе U и Fe менее окислены, а в интенсивно изменённом преобладают U^{6+} и Fe^{3+} ; зона в коричневом кристалле поликраза жилы Режевской (рис. 1д, зона с анализом 12) люминесцирует желтовато-зеленоватым цветом, что характерно для соединений с уранильной группой $(UO_2)^{2+}$.

Главные отражения дифрактограммы тёмнокоричневого поликраза жилы Береговой, прокаленного при 1000° С (d, Å; I, hkl): 2.984 (100) (131); 1.828 (22) (260); 2.591 (18) (002, 220); 1.727 (17) (311, 330); 2.423 (16) (060, 201); 3.658 (11) (130, 040); 2.776 (9) (200), — близки эвксениту-поликразу (ДРОН-2.0, СиК $_a$, оператор Т. М. Рябухина). Параметры элементарной ячейки поликраза составили (Å): a 5.55 \pm 0.01; b 14.54 \pm 0.01; c 5.18 \pm 0.01.

Четкой зависимости содержаний урана, степени метамиктности и содержания воды в поликразах не выявлено, но в наименее измененных чернокоричневых участках зерен поликраза жилы Береговой расчетное содержание H_2O около 1-1.2 мас. %, а в сильно измененных желто-коричневых -10-20

94 ПОПОВА

мас. % (табл.). Расчетное содержание воды для неоднородных зерен поликраза этой жилы в среднем 8.8 мас. % и сопоставимо с потерей при прокаливании 8.70 мас. % этих зерен (аналитик М. Н. Маляренок, ИМин УрО РАН). В жилах Режевской и Самарскитовой, где в поликразах 14–21 мас. % UO₂ (и до 27–30 в уранополикразе), содержание воды – 3–13 мас. %.

Выявленные эпигенетические изменения поликраза гранитных керамических пегматитов в гранитах Адуйского и Зенковского массивов обусловлены метамиктизацией структуры минералов сложного состава под воздействием радиационного излучения урана и последующей сорбции воды. При этом разные по составу зоны кристаллов претерпели несколько различные изменения, приуроченые к микротрещинам. Изменения первичного химического состава исследованных поликразов и зон эвксенита в них наиболее ярко проявлены в выносе U и Ті и сорбции воды, обогащении измененных участков и зон Y, Та и Nb. Поликразы из жил северной части Адуйского массива содержат больше U и Ті по сравнению с поликразом из более позднего Зенковского массива. В пегматитах Зенковского массива поликраз богаче Та и беднее U и Ті, чем в аляскитах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дэна Джс.Д., Дэна Э.С., Пэлач Ч. и др. Система минералогии. Т. 1(2). Окислы и гидроокислы / Перев. с англ. под ред. Д.П. Григорьева. М.: И.Л., 1951. 419 с.
- 2. Минералы: Справочник. Т. 2. Вып. 3. Сложные окислы, титанаты, ниобаты, танталаты, антимонаты, гидроокислы. М.: Наука, 1967. 675 с.
- 3. Попова В.И., Губин В.А. Минералогия гранитных керамических пегматитов Адуйского, Соколовского и Зенковского массивов на Среднем Урале // Уральский минералогический сборник № 15. Миасс–Екатеринбург: УрО РАН, 2008. С. 61–74.
- 4. Ферштатер Г.Б., Бородина Н.С., Рапопорт М.С. и др. Орогенный гранитоидный магматизм Урала. Миасс: ИГГ УрО РАН, 1994. 250 с.
- Чащухина В.А. Акцессорные минералы гранитоидов Мурзинско-Адуйского плутона // Вопросы петрологии и геохимии Урала. Свердловск: УНЦ АН СССР, 1975. С. 51–58.
- 6. *Чащухина В.А.* Акцессорный поликраз из гранитов Урала // Минералы месторождений Урала. Свердловск: УНЦ АН СССР, 1987. С. 65–67
- 7. *Чащухина В.А., Поляков В.О.* Поликраз // Минералогия Урала. Оксиды и гидроксиды. Ч. 1. Миасс-Екатеринбург: УрО РАН, 2000. С. 139–141.

Рецензент Э.М. Спиридонов

Radiation-epigenetic alterations of polycrase in the granitic pegmatites of Aduy and Zenkov massifs (Middle Urals)

V. I. Popova

Institute of Mineralogy, Urals Branch of RAS

In the granitic ceramic pegmatites of the Aduy and Zenkov massifs the alterations of metamict polycrase settle down to micro-cracks. Alterations of polycrase original chemical composition are showed in the extract of U and Ti (by water adsorbtion), enrichment of Y, Ta, and Nb in the changed crystals parts and zones. Polycrase of the veins in north Aduy massif contain more U and Ti than ones from the alaskite in Zenkov massif.

Key words: polycrase, uranopolycrase, euxenite, alteration, granitic ceramic pegmatite, Aduy and Zenkov granitic massifs, Middle Urals.