УДК 549.02:552.33

САНДЫИТЫ И ПОРОДЫ МОНЦОНИТОВОГО СОСТАВА ИЛЬМЕНОГОРСКОГО МИАСКИТОВОГО МАССИВА (ЮЖНЫЙ УРАЛ)

© 2017 г. А. Б. Немов¹, Е. В. Медведева¹, В. А. Котляров²

¹Ильменский государственный заповедник, 456317, г. Миасс, Ильменский заповедник, е-mail: ya.andrew808@yandex.ru. ²Институт минералогии УрО РАН, 456317, г. Миасс, Ильменский заповедник

Поступила в редакцию 31.05.2016 г.; принята к печати 27.10.2016 г.

Изучены текстурно-структурные особенности, химический состав минералов и характер распределения петрогенных, редкоземельных, редких и рассеянных элементов в породах Ильменогорского миаскитового массива (ИММ) милонитизированных миаскитах, и "сандыитах". Наши исследования позволили впервые установить наличие в ИММ пород монцонитового состава. Были изучены степень деформации пород и полистадийные метасоматические процессы преобразования в них. По минеральным ассоциациям установлена амфиболитовая фация метаморфизма, а наличие характерных акцессорных минералов – высокоглиноземистого титанита и ортита, широкие вариации содержаний алюминия в них указывают на высокую щелочность и присутствие фтора в метаморфизующем флюиде. Обнаружение в сандыитах минералов группы банальсита-стрональсита свидетельствует о широком диапазоне температур при развитии метасоматических процессов. Геохимическая тенденция преобразования пород отражена в увеличении концентрации TiO₂, MgO, CaO, суммарного Fe и ЛРЗЭ, и уменьшении содержаний SiO₂, ${
m Al}_2{
m O}_3,~{
m K}_2{
m O}.$ Исследованные породы отличаются высокими содержаниями РЗЭ в отличие от вмещающих апомиаскитовых милонитов. Для них характерны высокие содержания литофильных элементов (Rb, Ba, Sr, Th) и пониженные Co, Cu, W, Ni, Cr и Pb. В совокупности полученные данные позволяют сделать вывод о метасоматической природе формирования этих пород. Повышение концентраций РЗЭ и РЭ от милонитизированных миаскитов к сандыитам и породам монцонитиового состава свидетельствует о мобильности флюида и значительной роли корового вещества при их образовании. Мобильность указанных элементов и их перераспределение в породах возрастает при активном влиянии флюида, увеличении в нем концентрации щелочей и фтора. Сандыиты ИММ являются метасоматитами, образованными по апомиаскитовым милонитам, в линейных тектонически зонах на позднем постколлизионном сдвиговом этапе их формирования. Породы монцонитового состава являются ортопородами, вероятно образованными по диоритам, вмещающим массив. Они сохранили реликты первичных структур, но были преобразованы синхронно с сандыитами под влиянием полистадийных тектоно-метаморфических процессов.

Ключевые слова: миаскиты, сандышты, монцониты, милониты, метасоматоз

SANDYITES AND ROCKS OF MONZONITE COMPOSITION OF THE ILMENOGORSK MIASKIT MASSIVE (THE SOUTHERN URALS)

Andrey B. Nemov¹, Elena V. Medvedeva¹, Vasily A. Kotlyarov²

¹Ilmen State Reserve, 456317, Ilmeny Nature Reserve, Miass, Russia, e-mail: ya.andrew808@yandex.ru
²Institute of Mineralogy UB RAS, 456317, Ilmeny Nature Reserve, Miass, Russia

Received 31.05.2016; accepted 27.10.2016

The results of study of rocks of the Ilmenogorsk miaskite block - mylonitized miaskites, "sandyites" and monzonitic rocks, which were found for the first time, are presented in the paper. We studied textural-structural features of rock and their mineral and chemical composition. The composition of petrogenic elements in rocks were determined by atomic absolution method, rare earth, rare and trace elements - ICP-MS method. Microprobe analyses compositions of minerals were made on the scanning electron microscope REMMA-202 M with energy-dispersive console Link systems LZ with Si-Li detector. Correlation of data was performed using the program "Magellanes". These data allowed us to establish the degree of transformation of rocks and multistage metasomatic processes. The mineral assemblages indicate amphibolite facies of metamorphism, which was accompanied by participation of the F-bearing fluid and formation of specific accessory minerals – highly aluminous titanite and allanite. The highly variable Al contents of these minerals is evidence of high alkalinity at the presence of the fluorine in the fluid. The minerals of the banalsite-stronalsite group in sandyites points to a wide range of temperatures during metasomatic processes. Alteration of rocks results of the change of their chemical composition: the TiO₂, MgO, CaO, total Fe, and LREE contents increased and SiO₂, Al₂O₃, and K₂O contents decreased. The rocks are characterized by high REE contents in contrast to the host mylonitized miaskites and the high contents of lithophile elements (Rb, Ba, Sr, Th) and low contents of Co, Cu, W, Ni, Cr, and Pb. Our data indicate the metasomatic origin of the studied rocks. The increase in the contents of trace and rare earth elements from milonitized miaskites to sandyites and monzonitic rocks reflect their mobility and significant role of assimilation of the continental crust. The mobility of these elements and their redistribution in the rocks increase during active influence of fluid and growth in it the contents of alkalis and fluorine. Thus, sandyites of the Ilmenogorsky miaskite block are metasomatic rocks which produced after mylonitized miaskites in the linear tectonic zones during late postcollisional shear stage. The monzonitic rocks are ortho-rocks and were probably formed after country diorites. They kept relics of primary structures, but were transformed simultaneously with sandyites under influence of multistage tectonic-metamorphic processes.

Keywords: miaskites, sandyites, monzonites, milonites, metasomatites

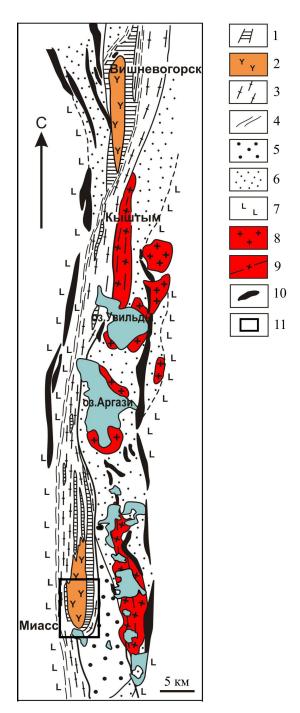
Для цитирования: Немов А.Б., Медведева Е.В., Котляров В.А. (2017) Сандыиты и породы монцонитового состава Ильменогорского миаскитового массива. *Литосфера*, **17**(3), 87-101. DOI: 10.24930/1681-9004-2017-3-087-101

For citation: Nemov A.B., Medvedeva E.V., Kotlyarov V.A. (2017). Sandyites and rocks of monzonite composition of the Ilmenogorsk miaskit massive (the Southern Urals). *Litosfera*, 17(3), 87-101. DOI: 10.24930/1681-9004-2017-3-087-101

ВВЕДЕНИЕ

В Ильменогорском миаскитовом массиве (ИММ) присутствуют меланократовые породы, которые по химическому составу относятся: а) к основным щелочным - "сандыитам" и б) к средним субщелочным – породам "монцонитового" состава. "Сандыит" - меланократовая разновидность нефелинового сиенита (миаскита), впервые описанная А.Н. Заварицким (1939) для щелочных пород ИММ, характеризуется широкой вариативностью состава и соответствует группе малиньит-ийолит-уртит (Петрографический кодекс..., 2008). В.Я. Левин (1974, 1997) рассматривает их как ксенолиты-реликты вмещающих амфиболитов, переработанных миаскитовым расплавом-раствором, которые встречаются в виде "маркирующих горизонтов" в амфиболовых миаскитах. Породы монцонитового состава обнаружены в зоне эндоконтакта миаскитового массива, где они представлены локальными линзовидными телами. Монцониты присутствуют в щелочных гранитоидных комплексах, как представители первых фаз внедрения (Ангаро-Витимский батолит, Забайкалье) или в плагиогранитных комплексах Полярного Урала, или участвуют в строении габбро-гранитоидных массивов (Верхнеуральский массив).

Щелочные породы Вишнево-Ильменогорской полиметаморфической сдвиговой зоны (рис. 1) представлены двумя миаскитовыми массивами (аллохтонными) – Вишневогорским на севере и Ильменогорским на юге, между которыми на протяжении 80 км располагаются полосы щелочных пород, представленные на западе премущественно миаскитами, на востоке – фенитами, сиенитами и их корундовыми разновидностями (Левин, 1974; Левин и др., 1997). Существует эволюция взглядов на происхождение щелочных пород этой полиметаморфической зоны. Изначально щелочные породы было принято считать продуктом мантийного интрузивного магматизма (Заварицкий, 1939). При проведении геологической съемки (1958-64 гг., 1976-82 гг.) и тематических работ (1972-80 гг.), а также благодаря поступлению большого объема новой информации по петрографии, петрохимиии и минералогии щелочных пород и вмещающих толщ, появилась возможность сформулировать палингенно-метасоматическую гипотезу и отнести массивы к "мантийно-коровомуфлюидно-анатектическому петротипу нефелин-сиенит-карбонатитовой формации по Л.С. Бородину" (Левин и др., 1997). Позднее появилась гипотеза о формировании щелочно-ультраосновной интрузии центрального типа, дезинтегрированной и растянутой вдоль оси сдвиговой зоны более чем на 100 км (Русин и др., 2006). Данные авторов о текстурноструктурных особенностях пород Ильменогорского комплекса (Медведева и др., 2013, 2016; Немов и др., 2015) и других исследователей (Кошевой, 1985; Hetzel, Glodny, 2002) позволяют отнести миаскиты к милонитам, протомилонитам и ультрамилонитам, развивающимся по породам Ильменогорского миаскитового массива (ИММ).


Породы ИММ интенсивно изменены тектонометаморфическими процессами (милонитизацией) и сопутствующими им метасоматическими преобразованиями. Разнообразие пород внутри массива нефелиновых сиенитов, вариативность составов от средних до основных щелочного, субщелочного и нормальных рядов являются продуктами метасоматических преобразований.

МЕТОДЫ ИССЛЕДОВАНИЯ

Состав петрогенных компонентов пород был определен атомно-абсорбционным методом (аналитики Л.Б. Лапшина, Н.В. Шаршуева), редкоземельные, редкие и рассеянные элементы -ICP-MS (аналитики К.А. Филиппова, М.С. Свиренко). Микрозондовые анализы составов минералов выполнены на растровом электронном микроскопе РЭММА-202 М с энергодисперсионной приставкой LZ Link Sistems с Si–Li детектором (ИМин УрО РАН, аналитик В.А. Котляров). Стандарты: шашки "Astimex scientific limited" MINM25-53 Mineral Mount Serial № 01-44 при разрешении детектора 160 эВ, ускоряющем напряжении 20–30 кВ, силе тока 3×10^{-3} Å, с диаметром пучка 1-2 мкм. Коррекцию данных осуществляли с использованием программы "Magellanes".

ГЕОЛОГИЧЕСКОЕ ПОЛОЖЕНИЕ

Ильменогорский миаскитовый массив представляет собой каплевидное тело, вытянутое в субме-

Рис. 1. Схематическая геологическая карта Ильмено-Вишневогорской полиметаморфической зоны (Русин и др., 2006).

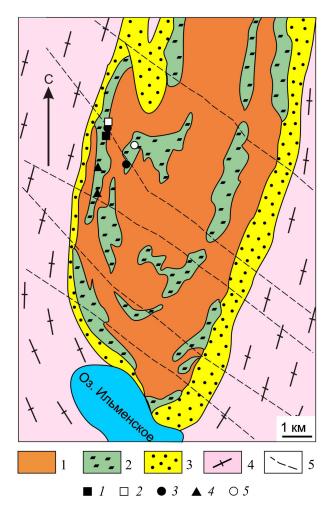
1 — селянкинская серия, амфибол-гнейсово-плагиомигматитовая (Ar-Pt₁); 2 — массивы миаскитов (O₂); 3 — бластомилониты гранитоидного и сиенитового состава (P₂-T₁(?)); 4 — милониты Кыштымского сдвига-надвига; 5 — еланчиковская толща плагиосланцев и мигматитов инъекционного типа; 6 — саитовская серия, метатерригенная; 7 — зеленосланцевые осадочно-вулканогенные комплексы Западно-Магнитогорской и Арамильско-Сухтелинской зон; 8 — Увильдинский монцонит-гранитный комплекс (Pz₃); 9 — гнейсовидные граниты Кисегачского комплекса; 10 — метатипербазиты; 11 — Ильменогорский миаскитовый массив.

Fig. 1. Schematic geological maps of the Ilmeny-Vishnevogorsk polymetamorphic zone (Rusin et al., 2006).

1 – Selyankino Group: Archean to Lower Proterozoic amphibolite-gneiss-plagiomigmatite rocks; 2 – Middle Ordovician miaskite massifs; 3 – Upper Permian-Lower Triassic (?) granitic and syenitic blastomylonites; 4 – mylonites of Kyshtym shear-thrust; 5 – Elanchik Sequence: plagioshales and injection migmatites; 6 – Saitovo Sequence: metaterrigenous roks; 7 – greenschist volcanosedimentary complexes of West Magnitogorsk and Aramil-Sukhteli zones; 8 – Upper Precambrian Uvil'dy monzogranitic complex; 9 – gneissic granites Kisegach complex; 10 – metaultramafic rocks; 11 – Ilmenogorsky miaskite massif.

ридиональном направлении, сложенное преимущественно биотитовыми и амфибол-биотитовыми миаскитами, реже амфиболовыми миаскитами (рис. 2). Переходы между породами постепенные. Все породы массива в разной степени милонитизированы (Кошевой, 1985; Ворощук, 2001) — преобразованы хрупкопластичными деформациями простого сдвига в условиях амфиболитовой фации метаморфизма (270–240 млн. лет назад) (Hetzel, Glodny, 2002).

Массив осложнен жильными телами и дайками поздних миаскитов, сиенитов и гранитов, приуроченных к тектоническим нарушениям.


Сандыиты в миаскитовом массиве образуют линейные и будинообразные тела со сложной морфологией, иногда зональные, мощностью от 0.1–0.5 до 0.5–10.0 м (Медведева и др., 2013). Наибольшее развитие тел сандыитов наблюдается в зонах развития амфиболовых миаскитов вблизи западного контакта массива.

Тела пород "монцонитового" состава обнаружены в зоне эндоконтакта среди средне-мелкозернистых амфибол-биотитовых миаскитов, на левом склоне Аптекарского лога, где они образуют узкие, субсогласные тела мощностью до 0.5 м, простирающиеся в север-северо-восточном направлении.

ПЕТРОГРАФИЧЕСКАЯ И МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД

Миаскиты ИММ в районе развития тел сандыитов и пород монцонитового состава деформированы и преобразованы в милониты.

Амфиболовые и амфибол-биотитовые апомиаскитовые милониты — мезократовые средне—мелкозернистые породы с отчетливой полосчатой и линейной текстурой. Минеральный состав (об. %): К—Nа полевой шпат — 30–45, плагиоклаз — 15–20, нефелин — 15–20, тарамит — 10–5, биотит — 1–5, акцессорные минералы (алланит, титанит, ильменит, циркон, апатит) — 2–3. Микроскопическая структура породы гетерогранобластовая, реже лепидогранобластовая. Крупные индивиды полевых шпатов и нефелина представлены в виде порфирокласт среди

Рис. 2. Схематическая геологическая карта Ильменогорского миаскитового массива (Левин, 1974).

1 — биотитовые миаскиты, 2 — амфиболовые миаскиты, 3 — фениты, 4 — амфибол-гнейсово-плагиомигматитовые породы селянкинской серии, 5 — разломы. Значками показаны места отбора проб: I — амфиболовые, биотитамфибоовые миаскиты (HM 9-13, Ал 1-15 (N 55°03'30.5″ Е 60°07'56.2″)); 2 — гранат-амфиболовые миаскиты (Ал 6-13 (N 55°03'30.5″ Е 60°07'56.2″)); 3 — биотитамфиболовые сандыиты (Ал 6а-13а, Ал 6а-13, Ал 6а-13в (N 55°03'30.5″ Е 60°07'56.2″)), Ал 7-13 (N 55°03'26.4″ Е 60°08'08.9″)); 4 — амфибол-пироксеновые сандыиты (HM 07-13 (N 55°01'55.4″ Е 60°08'09.7″)); 5 — породы монцонитового состава (Ал 2-13, Ал 3-13, Ал 4-13 (N 55°03'31.9″ Е 60°07'53.7″)).

Fig. 2. Schematic geological maps of the Ilmenogorsky miaskite massif (Levin, 1974).

1 – biotite miaskites, 2 – amphibole miaskite, 3 – fenite, 4 – amphibolite-gneiss-plagiomigmatite rocks of Selyankino Group, 5 –faults. Places sampling: I – amphible, biotite-amphibole miaskites (HM 9-13, A π 1-15 (N 55°03′30.5″ E 60°07′56.2″)); 2 – garnet-amphibole miaskites (A π 6-13 (N 55°03′30.5″ E 60°07′56.2″)); 3 – biotite-amphibole sandyites (A π 6a-13a, A π 6a-13, A π 6a-13b (N 55°03′30.5″ E 60°07′56.2″)), A π 7-13 (N 55°03′26.4″ E 60°08′08.9″)); 4 – amphibol-clinopyroxene sandyites (HM 07-13 (N 55°01′55.4″ E 60°08′09.7″)); 5 – rocks of monzonite composition (A π 2-13, A π 3-13, A π 4-13 (N 55°03′31.9″ E 60°07′53.7″)).

мелкозернистого перекристаллизованного матрикса. Деформационные особенности породы выражены в перекрещивающихся плоскостях С–S милонитизации, развитии порфирокласт и микросдвигов, краевой перекристаллизации, теней давления. Эти признаки характерны для протомилонитов и милонитов средней степени метаморфизма. Ортоклазмикроклин образует единичные порфирокласты с оторочкой перекристаллизации или порфировидные скопления (до 10–15 мм).

Лейкократовые гранат-амфиболовые апомиаскитовые милониты, слагающие оторочку отдельных тел сандыитов, имеют средне-мелкозернистую структуру, линзовидно-полосчатую текстуру (рис. 3а). Структура основной массы породы гетерогранобластовая с яркими порфиробластами граната, слегка уплощенными вдоль полосчатости. Деформационные особенности выражены в милонитизации (С–S плоскости), кингбандах, микросдвигах зерен и формировании теней давления (гранат, ортоклаз—микроклин). Минеральный состав, об. %: микроклинортоклаз – 30–40, альбит – 20–30, нефелин – 15–20, тарамит – 5–10, гранат – 3–5, акцессорные минералы (кальцит, ильменит, циркон, алланит) – до 1–2.

Одним из основных породообразующих минералов в апомиаскитовых милонитах является ортоклаз—микроклин, часто с хорошо заметными "пламеневидными" пертитами. Его состав в этих породах отличается малыми концентрациями Ва (табл. 1, ан. 9, 20), а в гранатсодержащих апомиаскитовых милонитах он не содержит кальция.

Альбит образует мелкие идиобласты постоянного состава среди основной массы.

Тарамит характеризуется высокой железистостью (f 82–86) и низким содержанием Si – от 5.72 до 5.91 к. ф. (см. табл. 1, ан. 1, 2, 8, 19). Для него отмечены повышенные содержания A^{IVI} – от 0.15 до 0.22 к. ф., Na – от 0.34 до 0.48 в позиции A, в сравнении с тарамитом из сандыитов.

Слюда группы биотита представлена аннитом (f 61–82). Количество AI^{VI} в нем варьирует от 0.17 до 0.38 к. ф. (см. рис. 4в); табл. 1, ан. 3, 4, 10), концентрации титана – от 0.03 до 0.2 к. ф. (0.48–3.36 мас. %), а соотношение Mg/Fe^{2+} – от 0.23 до 0.76. Содержания титана и алюминия в биотите в пределах одной исследуемой области варьируют в пределах 2 мас. % (см. табл. 1, ан. 3, 4).

Гранат из гранат-амфиболовых апомиаскитовых милонитов соответствует андрадит–гроссуляру (см. табл. 1, ан. 17, 18), который слагает однородные по составу зерна.

Титанит образует клиновидные индивиды и характеризуется колебаниями Al от 0.12 до 0.2 к. ф. $(Al_2O_3-2.9-5.18$ мас. %). В нем отмечены следы Nb, Sr, Y (см. табл. 1, ан. 7, 13, 24). Алланит образует зерна размером 0.30-0.02 мм, замещаемые высокожелезистым эпидотом и бастнезитом (см. табл. 1, ан. 14-16, 23).

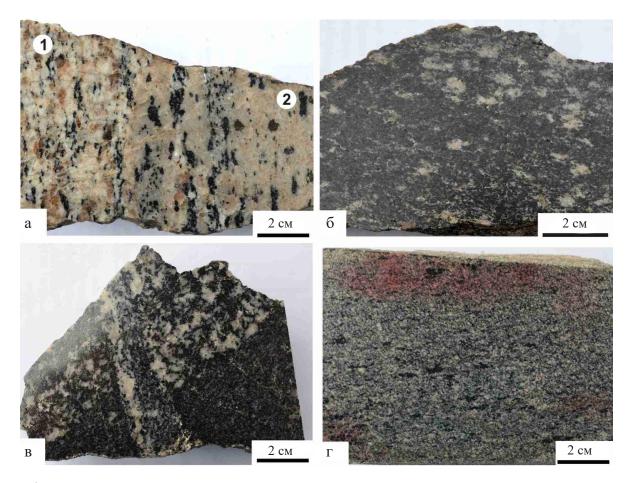


Рис. 3. Породы ИММ.

а – биотит-амфиболовый миаскит (1), постепенно переходящий в гранат-амфиболовый миаскит (2); б – амфибол-пироксеновый сандыит; в – биотит-амфиболовый сандыит; г – порода монцонитового состава.

Fig. 3. Rocks from IMM.

a – biotite-amphibole miaskite (1) gradually turning in the garnet-amphibole miaskite (2); $\mathbf{6}$ – amphibole-pyroxene sandyite; \mathbf{B} – biotite-amphibole sandyite; \mathbf{r} – monzonite composition rock.

Среди *сандыитов* по минеральному и химическому составу выделены две разновидности: *амфибол-пироксеновые* и *биотит-амфиболовые*.

Амфибол-пироксеновые сандышты содержат (об. %): эгирин-диопсид -60–70, тарамит -25–35, ортоклаз -10–15, плагиоклаз -0–5, нефелин -0–5, акцессорные минералы (титанит, апатит, кальцит и незначительные количества ильменита, циркона и алланита) -3–5.

Биотит-амфиболовые сандыиты имеют следующий минеральный состав,%: тарамит -25-35, биотит -15-25, ортоклаз-микроклин -20-30, альбит -15-20, нефелин -0-5, акцессорные минералы (титанит, кальцит, апатит, единичные зерна циркона, алланит и ильменит) - до 5-10.

Породы характеризуются мелко-среднезернистой структурой, иногда порфиробластовой (см. рис. 36). Текстура пятнисто-полосчатая (см. рис. 3в), реже шлироподобная. Микроскопически структура пород

гранобластовая, реже нематогранобластовая. Основную ткань породы слагают срастания полевых шпатов, амфиболов и (или) пироксенов, среди которых расположены зерна титанита, апатита. Пойкилобласты тарамита, иногда биотита содержат включения катаклазированных зерен титанита (рис. 4в), реже ортоклаз—микроклина (рис. 4б). Изометричные зерна кальцита находятся среди индивидов полевых шпатов и амфиболов. Деформационные особенности пород выражены в волнистом угасании полигональных индивидов полевого шпата, реже нефелина. В биотит—амфиболовых сандыитах четко выражены плоскости милонитизации и появляются тени давления около порфирокласт полевого шпата.

Полевые шпаты представлены индивидами ортоклаза (0.1–0.4 мм) или ортоклаз–микроклина (см. табл. 1, ан. 26, 32), иногда пелитизированными. Для крупных индивидов характерны микропертиты (рис. 4а) и мезопертиты. Отличительная чер-

та ортоклаз—микроклинов в сандыитах — вариативность концентраций Ва от 0.26 до 1.5 мас. %. Также в сандыитах присутствует альбит, образующий мелкие полигональные зерна (0.06–0.1 мм) и слагающий оторочки ортоклаза.

Тарамит и пироксен (эгирин–диопсид) образуют ситовидные зерна размером 0.2–0.6 мм (см. рис. 4б). Титанит присутствует в виде включений в ситовидных индивидах тарамита (рис. 4в) и эгирин–диопсида, а также образует каймы обраста-

Таблица 1. Химический состав и кристаллохимические коэффициенты минералов из апомиаскитовых милонитов, сандыитов и пород монцонитового состава (мас. % и к. ф.)

Table 1. Chemical composition and crystallochemical index of minerals from apomiaskites mylonites, sandyites and rocks of monzonite compositions (wt % and f. e.)

	I								II								
	Trm Bt			Ab	Nph	Ttn	Trm	Kfs	Bt	Ilm		Ttn Aln		ln	Bs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
SiO ₂	38.00	38.10	33.00	34.80	67.10	43.30	30.70	36.40	65.10	36.40	_	_	30.00	34.00	30.30	0.970	
TiO ₂	1.05	0.91	0.48	2.29	_	_	35.30	1.06	_	3.36	47.50	52.20	32.80	_	_	_	
Al_2O_3	12.60	12.30	17.40	14.80	20.60	33.40	2.90	13.30	18.30	15.50	_	_	5.18	17.00	13.30	_	
FeO	26.30	27.50	29.70	22.80	0.09	0.26	1.88	29.20	0.10	26.40	19.80	15.00	1.06	13.80	39.50	_	
MnO	2.34	2.51	3.05	3.53	_	_	_	1.51	_	2.46	32.50	32.50	_	_	_	-	
MgO	4.01	3.44	3.71	8.21	_	0.40		2.90	_	4.30	_	_		0.13	1.20	0.13	
CaO	7.64	8.35	0.22	0.27	0.87		27.60	8.82	0.12	0.06	_	_	29.10	11.80	2.66	2.21	
Na ₂ O	3.83	3.17	-	-	11.10	15.60	_	3.25	1.24	-	_	_	_	_	_	_	
K ₂ O	2.16	2.19	8.97	9.32	0.17	6.13	-	2.25	14.90	7.80	-	-	-	-	-	-	
$\frac{\sum}{\text{Si}}$	97.93	98.47	96.53	96.02	99.93	99.09	98.38	98.69	99.76	96.28	99.80	99.70	98.14	76.73	86.96	3.31	
	5.91	5.93	2.68	2.78	2.94	1.07	0.99	5.72	3.01	2.92	-	-	0.96	3.16	2.81	0.04	
Ti	0.12	0.11	0.03	0.14	1.06	- 0.07	0.87	0.13	1.00	0.20	0.90	0.99	0.79	1.06	1 42	_	
Al Fe ³⁺	2.31	2.26 1.49	1.66 0.05	1.39 0.23	1.06	0.97	0.12	2.45	1.00	1.46	_	0.08	0.20	1.86	1.42 0.90	_	
Fe ²⁺	1.48	2.08	1.97	1.29	0.00	0.01	0.06	1.45 2.37	_ _	1.77	0.42	0.08	0.03	0.71	2.16	_	
Mn	0.31	0.33	0.16	0.19	-	0.01	0.00	0.20	_	0.13	0.42	0.23	0.03	0.30	2.10	_	
Mg	0.93	0.80	0.10	0.19	_		_	0.20	_	0.13	- 0.03	0.70		0.02	0.17	0.01	
Ca	1.27	1.39	0.43	0.05	0.04	0.01	0.96	1.48	0.01	0.01			1.00	1.17	0.17	0.01	
Na	1.15	0.95	-	-	0.95	0.75	-	0.99	0.10	-	_	_	-		-	-	
K	0.43	0.43	0.93	0.95	0.01	0.19	_	0.45	0.88	0.80	_	_	_	_	_	_	
*f	0.79	0.82	0.82	0.61	_	_	_	0.85	_	0.77	_	_	_	0.98	0.95	_	
				I	II	:	•	•	IV							V	
	G	rt	Trm	Kfs	Ab	Nph	Aln	Ttn	Trm	Kfs	Nph	Bt	Ttn	Cal	Bt	Kfs	
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	
SiO ₂	33.70	34.40	36.80	64.80	66.40	42.40	33.40	29.70	40.00	63.50	43.00	36.60	32.20	_	35.90	64.80	
TiO ₂	2.37	2.05	0.82	_	_	_	0.60	33.30	1.04	_	_	2.05	32.60	_	1.80	-	
Al_2O_3	5.19	5.72	12.60	18.70	20.90	34.80	15.20	3.98	10.70	19.00	34.20	12.70	6.09	_	12.40	19.30	
FeO	21.80	21.90	29.00	_	0.06	0.21	14.50	2.07	24.80	0.07	0.10	24.50	0.87	0.10	27.20	0.04	
MnO	4.99	5.63	2.11	_	_	_	0.74	0.05	0.97	_	_	1.21	_	0.36	1.64	_	
MgO	0.33	0.12	2.73	_	0.06	0.56	11.60	- 70	6.44	_	- 20	10.20	27.20	- 54.90	8.87	- 0.01	
CaO	30.80	29.9	8.27 3.21	0.06	0.88	0.56 15.70	11.60	27.70	7.53 4.32	1.90	0.28	_	27.20	54.80	0.11	0.01 2.39	
Na ₂ O K ₂ O	_	_	2.37	0.86 15.20	10.80 0.16	5.96	_	_ _	2.08	13.40	5.83	9.60	_	_	8.98	13.10	
	99.18	99.72	97.91	99.56	99.26	99.63	76.04		97.88	97.87	99.81	96.86	98.96	56.52	96.90	99.64	
Σ Si	2.76	2.81	5.81	3.00	2.94	1.04	3.14	0.96	6.15	2.96	1.02	2.86	1.03	-	2.83	2.97	
Ti	0.15	0.13	0.10	J.00 —	2.94	-	0.04	0.90	0.13	2.90	1.02	0.12	0.79	_	0.11	2.91	
Al	0.13	0.13	2.34	1.02	1.09	1.01	1.68	0.02	1.94	1.05	0.98	1.18	0.79	_	1.15	1.04	
Fe ³⁺	1.49	1.49	1.58	-	-	-	0.76	-	1.33	-	-	0.09	-	_	0.05	-	
Fe ²⁺	-	-	2.25	_	_	_	0.38	0.06	1.85	_	_	1.51	0.02	_	1.73	_	
Mn	0.35	0.39	0.28	_	_	_	0.06	_	0.13	_	_	0.06	_	_	0.08	_	
Mg	0.04	0.01	0.64	_	_	_	_	_	1.48	_	_	1.18	_	_	1.04	_	
Ca	2.71	2.61	1.40	_	0.04	0.01	1.17	0.96	1.24	_	0.01	_	0.93	0.99	0.01	_	
Na	_	_	0.98	0.08	0.92	0.75	_	_	1.29	0.18	0.80	_	_	_	–	0.21	
K	_	_	0.48	0.90	0.01	0.19	_	_	0.41	0.81	0.19	0.96	_	_	0.90	0.78	
*f	0.97	0.99	0.86	_	_	_	_	_	0.68	_	_	0.58	_	_	0.63	_	

Таблица 1. Окончание

Table 1. Ending

	<u> </u>		7		VI									VII		
	V V			TI.	TT.	C	T.C.	4.1			4.1	D		7.7		
	Ab	Ttn	Aln	Trm	Trm	Cpx	Kfs	Ab	Nph	Ttn	Aln		s-Sns	mgHs		Ttn
g: 0	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
SiO ₂	68.10	30.10		39.90	39.50	50.00	64.90	68.30	i	30.30	32.30	i				28.90
TiO ₂	-	35.40	-	0.68	0.88	0.88	10.20	10.60	-	34.10		-	-	1.03	0.14	39.20
Al_2O_3	19.90	3.57		10.40	10.60	4.38	18.20	19.60	1	4.14	12.50					1.81
FeO	0.05	1.58		27.20	25.70	20.60	_	_	0.17	1.43	14.40		0.20	23.90	1	1.21
MnO	_	_	0.45	1.46	2.18	0.99	_	_	-	_	0.71	_	_	1.19	0.43	_
MgO	- 0.21	20.40	0.40	4.76	5.17	3.86	-	-	1 10	20.20	0.35	- 0.41	- 40	6.46	5.05	26.40
CaO	0.21	28.40	6.57	7.42	7.92	12.80	0.09	0.09	1.19	28.30	1	0.41	0.48	9.16	15.00	
Na ₂ O	11.70	_	-	4.23	3.97	5.64	1.12	11.50		_	_	9.86	10.10		3.57	_
K ₂ O	0.06	- 00.05	- (7.72	1.95	2.00	- 00.15	15.10	0.22	6.00	00.27	-	0.47	0.31	2.22	99.78	07.52
\sum_{α}	100.0	99.05		98.00	97.92	99.15	99.41	99.71	99.46	98.27	69.69					97.52
Si	2.97	0.97	3.30	6.20	6.13	1.92	1.03	2.99	1.07	0.98	3.24	4.18	4.17	5.76	1.98	0.95
Ti	1.02	0.86	-	0.08	0.10	0.03	-	-	-	0.83	0.09	-	-	0.12	-	0.98
Al	1.02	0.14	1.72	1.90	1.94	0.20	0.98	1.01	0.99	0.16	1.48	3.77	3.87	2.37	0.20	0.07
Fe ³⁺	_	-	0.71	1.42	1.36	0.32	_	_	-	-	0.80	0.02	0.02	1.03	0.10	-
Fe ²⁺	_	0.04	0.38	2.11	1.98	0.33	_	_	0.01	0.04	0.41	-	-	2.06	0.54	0.03
Mn	_	_	0.04	0.19	0.29	0.03	_	_	_	_	0.06	-	_	0.16	- 20	_
Mg	- 0.02	-	0.06	1.10	1.20	0.22	_	0.01	-	-	0.05	-	0.05	1.50	0.29	-
Ca	0.02	0.98	0.71	1.24	1.32	0.53	0.10	0.01	0.03	0.98	0.88	0.05	0.05	1.53	0.62	0.93
Na	0.99	_	-	1.27	1.19	0.42	0.10	0.98	0.71	_	-	2.03	2.03	0.35	0.27	_
K *f	_	_	0.05	0.39	0.40	- 0.75	0.89	0.01	0.19	_	0.06	0.06	0.04	0.44	-	_
-1	_		0.95	0.76	0.74	0.75	_	_	_	_	0.96	_	_	0.67	0.80	-
		-					-	·					<u> </u>			
		1	'III			IX					X				XI	
	Hbl	Kfs	Bt	Ttn	Hbi	! Ab	B		Hst mg		Kfs	Ab	_	mgHst	Ab	Bt
	<i>Hbl</i> 49	1	<i>Bt</i> 51	52	53	! Al	B	5 5	56 5			59	60	mgHst		63
SiO ₂		Kfs	<i>Bt</i> 51 39.30	52 28.70	53	! Al	b B 4 55 00 38.	5 5 20 41	56	57	<i>Kfs</i> 58	59			Ab	63 37.10
SiO ₂ TiO ₂	49 45.90 0.47	<i>Kfs</i> 50 64.20	8t 51 39.30 2.52	52 28.70 38.80	53 0 43.0 0 0.64	1 Al 54 0 67.0 1 -	b B 55 00 38. 1.8	5 5 20 41 35 0.	.10 42 74 0	57 2.80 6 .63	Kfs 58 3.20 6	59 54.90 -	60 28.80 40.10	61 42.30 1.20	<i>Ab</i> 62 63.50 –	63 37.10 2.89
TiO ₂ Al ₂ O ₃	49 45.90 0.47 6.07	<i>Kfs</i> 50 64.20	8t 51 39.30 2.52 14.20	52 28.70	53 0 43.0 0 0.64 8.44	1 All 54 0 67.0 1 - 1 20.0	b B 53 00 38. 1.8 00 12.	5 5 20 41 35 0. 70 8.	56 3 .10 42 74 0 96 9	57 2.80 6 .63 .59 1	Kfs 58 3.20 6 - 8.80 2	59 54.90	60 28.80	61 42.30 1.20 9.00	<i>Ab</i> 62 63.50 - 23.10	63 37.10 2.89 14.20
TiO ₂ Al ₂ O ₃ FeO	49 45.90 0.47 6.07 18.70	<i>Kfs</i> 50 64.20	8t 51 39.30 2.52 14.20 19.90	52 28.70 38.80 1.80 1.99	53 0 43.0 0 0.64 8.44 20.8	1 Al 54 0 67.0 1 - 1 20.0 3 0.3	b B 53 00 38. 1.8 00 12. 0 20.	5 5 20 41 35 0. 70 8. 40 21	66 3 .10 42 74 0 96 9 .80 20	2.80 6 .63 .59 1 0.40 (Kfs 58 3.20 6 - 8.80 2	59 54.90 -	60 28.80 40.10	61 42.30 1.20 9.00 21.70	<i>Ab</i> 62 63.50 –	63 37.10 2.89 14.20 22.40
TiO ₂ Al ₂ O ₃ FeO MnO	49 45.90 0.47 6.07 18.70 0.29	Kfs 50 64.20 - 18.80	8t 51 39.30 2.52 14.20 19.90 0.30	52 28.70 38.80 1.80 1.99 0.07	53 0 43.0 0 0.64 8.44 20.8 0.33	Alt 54 54 0 67.0 4 - 4 20.0 3 0.3 3 -	0 B 00 38. 1.8 00 12. 0 20. 0.2	5 5 20 41 35 0. 70 8. 40 21 23 0.	56 3 .10 42 74 0 96 9 .80 20 21 0	57 2.80 6 .63 .59 1 0.40 (Kfs 58 3.20 6 - 8.80 2	59 54.90 - 22.00	60 28.80 40.10 1.49	61 42.30 1.20 9.00 21.70 0.25	<i>Ab</i> 62 63.50 - 23.10	63 37.10 2.89 14.20 22.40 0.14
TiO ₂ Al ₂ O ₃ FeO MnO MgO	49 45.90 0.47 6.07 18.70 0.29 12.10	Kfs 50 64.20 - 18.80 0.09	8t 51 39.30 2.52 14.20 19.90 0.30 12.50	52 28.70 38.80 1.80 1.99 0.07	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64	1 At 54 0 67.0 1 - 1 20.0 3 0.3 3 - 1 -	0 B 1 53 00 38. 1.8 00 12. 0 20. 0.2 13.	5 5 20 41 35 0. 70 8. 40 21 23 0. 40 8.	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9	57 2.80 6 .63 .59 1 0.40 (.24 .85	Kfs 58 3.20 6 - 8.80 2 - - -	59 54.90 - 22.00 0.07 - -	60 28.80 40.10 1.49 1.77	61 42.30 1.20 9.00 21.70 0.25 8.51	Ab 62 63.50 - 23.10 0.00	63 37.10 2.89 14.20 22.40
TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20	Kfs 50 64.20 - 18.80 0.09	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11	52 28.70 38.80 1.80 1.99 0.07	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0	d Alt 54 54 0 67.0 1 - 4 20.0 3 0.3 3 - 4 - 0 0.6	b B 5: 00 38. 1.8 00 12. 0 20. 0.2 13. 2 0.0	5 5 20 41 35 0. 70 8. 40 21 23 0. 40 8. 99 11	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11	57 2.80 6 .63 .59 1 0.40 (.24 .85	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14	60 28.80 40.10 1.49 1.77	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20	Ab 62 63.50 - 23.10 0.00 - 3.24	63 37.10 2.89 14.20 22.40 0.14
TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90	Kfs 50 64.20 - 18.80 0.09 - 0.59	Bt 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11	52 28.70 38.80 1.80 1.99 0.07 - 27.70	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04	d Alb 54 54 0 67.0 1 - 4 20.0 3 0.3 3 - 4 - 0 0.6 4 11.	B B 50 38. 1.8 1.8 00 12. 0 20. 0.2 13. 2 0.0 2 -	5 5 20 41 35 0. 70 8. 40 21 23 0. 40 8. 99 11 - 2.	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1	57 2.80 6 .63 .59 1 0.40 (.24 .85 20	Kfs 58 3.20 6 -	59 64.90 - 22.00 0.07 - - 2.14 10.4	60 28.80 40.10 1.49 1.77 - - 27.50	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45	63 37.10 2.89 14.20 22.40 0.14 10.40
TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50	Bt 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22	52 28.70 38.80 1.80 1.99 0.07 - 27.70	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37	I All 54 54 0 67.0 1 - 4 20.6 3 0.3 3 - 4 - 0 0.6 4 11. 7 0.2	B B C C C C C C C C	55 55 55 56 55 55 570 41 335 0. 770 8. 440 21 223 0. 440 8. 39 11 2. 555 1.	56 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1	57 2.80 6 .63 .59 1 0.40 (.24 .85 .20 .67 1 .39 1	Kfs 58 58 3.20 6 -	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25	60 28.80 40.10 1.49 1.77 - - 27.50	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \\ \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 97.2	d All 54 54 0 67.0 1 - 4 20.6 3 0.3 3 - 4 - 0 0.6 4 11. 7 0.2 6 99.4	B B C C C C C C C C	55 5 56 5 57 5 58 5 58 5 59 11 50 5 50 5	56 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97	57 2.80 6 .63 .59 1 0.40 (.24 .85 .20 .67 1 .39 1 7.77 9	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 99.76	60 28.80 40.10 1.49 1.77 - - 27.50 - - 99.66	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \underline{\Sigma}\\ \text{Si} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84	Kfs 50 64.20 - 18.80 0.09 0.59 15.50 99.18 2.99	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6 97.2	I Alt 54 54 0 67.0 1 - 4 20.0 3 0.3 3 - 4 - 0 0.6 4 11. 7 0.2 6 99.4 4 2.9	B B C C C C C C C C	55 5 56 5 57 5 58 6 59 6 50 6 50 6 50 7 50 8 50 8 50 9 60 8 60 9 60 9	56 3 .10 42 774 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6	57 2.80 6 .63 .59 1 0.40 (.24 .85 .20 .67 1 .39 1 7.77 9 .43 2	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - 2.14 10.4 0.25 99.76 2.86	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \underline{\Sigma}\\ \text{Si}\\ \text{Ti} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18 2.99	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.00 0.94	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 97.2 6.54 0.07	I All 54 54 0 67.0 1 - 4 20.0 3 0.3 3 - 4 - 0 0.6 4 11. 7 0.2 6 99.4 4 2.9 7 -	B B S S S S S S S S	55 55 55 55 55 55 55 96 611 0.	56 3 .10 42 .74 0 .96 9 .80 20 .21 0 .86 9 .60 11 .69 97 .64 6 .69 97	57 2.80 63 .59 1 0.40 (24 .85 .20 .67 1 7.77 9 .43 .07	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 -22.00 0.07 - - 2.14 10.4 0.25 19.76 2.86	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \underline{\Sigma}\\ \text{Si}\\ \text{Ti}\\ \text{Al} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06	Kfs 50 64.20 - 18.80 0.09 0.59 15.50 99.18 2.99 - 1.03	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 11.0 2.04 1.37 6 97.2 6.54 0.00 1.51	I Alt 54 54 0 67.0 1 - 1 20.0 3 0.3 3 - 0 0.6 1 1.0 2 99.4 2 99.4 1 1.0	B B C C C C C C C C	55 5 56 5 57 5 58 5 58 5 58 6 59 6 50 6 50 6 50 6 50 7 60 7	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 7.77 9 43 2 .07 .70 1	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 09.76 2.86 - 1.14	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81 - 1.20	63 37.10 2.89 14.20 22.40 0.14 10.40 - - 8.28 95.41 2.88 0.16 1.30
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \underline{\Sigma}\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18 2.99 - 1.03 -	Bt 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 5 97.2 6.54 0.07 1.51 0.80	I Alt 54 54 0 67.0 1 - 1 20.0 3 0.3 3 - 0 0.6 4 11. 7 0.2 6 99.4 2 99.4 1 1.0 0 -	B B C C C C C C C C	55 5 55 5 56 5 57 6 8. 40 21 23 0. 40 8. 11 2. 55 1. 552 96 552 96 6. 11 0. 44 1. 44 0.	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 99.76 2.86 - 1.14 -	28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 -	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81 - 1.20 -	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \sum\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18 2.99 - 1.03	Bt 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 97.2 6.54 0.07 1.51 0.80 1.85	I All 54 54 0 67.0 4 - 4 20.0 3 0.3 3 - 0 0.6 4 11. 7 0.2 6 99.4 4 2.9 7 - 1 1.0 - 5 0.0 0.0	B B C C C C C C C C	55 5 56 5 57 5 58 40 21 23 0. 440 8. 440 8. 55 1. 552 96 552 96 6. 11 0. 14 1. 14 1. 15 2.	56 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0 18 1	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1 .91 .65 (Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 -22.00 0.07 - - 2.14 10.4 0.25 99.76 - 1.14 - -	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 - 0.05	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81 - 1.20	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53 0.92
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{X}_2\text{O}\\ \underline{\sum}\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \text{Mn} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45 0.04	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18 2.99 - 1.03	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02 0.02	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6.54 0.07 1.51 0.80 1.85 0.04	7 All 54 54 54 54 54 54 54 54 54 54 54 54 54	B B C C C C C C C C	55 5 56 5 570 41 385 0. 770 8. 440 21 23 0. 440 8. 99 11 - 2. 555 1. 552 96 902 6. 11 0. 14 1. 14 0. 15 2. 10 0. 11 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0	56 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0 18 1 03 0	57 2.80 6 .63 .59 1).40 (24 .852067 1 .39 1 7.77 9 .43 2 .77 1 .9165 (03	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 -22.00 0.07 - - 2.14 10.4 0.25 99.76 2.86 - 1.14 - -	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 - 0.05	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33 0.03	Ab 62 63.50 - 23.10 0.00 3.24 9.45 0.33 99.62 2.81 - 1.20	63 37.10 2.89 14.20 22.40 0.14 10.40 - - 8.28 95.41 2.88 0.16 1.30 0.53 0.92 0.01
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{X}_2\text{O}\\ \underline{\sum}\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \text{Mn}\\ \text{Mg} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45 0.04 2.69	Kfs 50 64.20 - 18.80 0.09 - 0.59 15.50 99.18 2.99 - 1.03	Bt 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02 0.02 1.40	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6.54 0.07 1.51 0.80 1.85 0.04 2.19	7 All 54 S4 S4 S54 S54 S54 S54 S54 S54 S54 S5	B B C C C C C C C C	55 5 56 5 570 411 370 8. 440 211 23 0. 440 8. 99 111 2. 555 1. 552 96 902 6. 14 1. 14 0. 15 2. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0	56 3.10 42.74 0.96 9.80 20.21 0.86 9.60 111 02 1 440 1.69 97 444 6 60 09 0.62 1 61 0.18 1 03 0 03 2	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1 .91 .65 (03 .21	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 99.76 2.86 - 1.14 - - -	28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 - 0.05	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33 0.03 1.94	Ab 62 63.50 - 23.10 0.00 3.24 9.45 0.33 99.62 2.81 - 1.20	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53 0.92 0.01 1.20
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{X}_2\text{O}\\ \underline{\sum}\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \text{Mn}\\ \text{Mg}\\ \text{Ca}\\ \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45 0.04 2.69 1.78	Kfs 50 64.20 - 18.80 0.09 0.59 15.50 99.18 2.99 - 1.03	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02 0.02 1.40	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05 -	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6.54 0.07 1.51 0.86 1.83 0.04 2.19	7 All 1.00 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 14 - 0.00 0.00 14 - 0.00 0.00 14 - 0.00 0.00 14 - 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.	B B C C C C C C C C	55 5 56 5 570 411 370 8. 440 211 23 0. 440 8. 99 111 - 2. 555 1. 552 966 902 6. 14 0. 14 0. 15 2. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 1	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0 18 1 03 0 03 2 92 1	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1 .65 (03 .21 .81	Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 99.76 2.86 - 1.14 - - 0.10	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 - 0.05 - 0.96	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33 0.03 1.94 2.00	Ab 62 63.50 - 23.10 0.00 3.24 9.45 0.33 99.62 2.81 - 1.20 0.15	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53 0.92 0.01 1.20
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \frac{\sum}{\text{Si}}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \text{Mn}\\ \text{Mg}\\ \text{Ca}\\ \text{Na} \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45 0.04 2.69 1.78 0.55	Kfs 50 64.20 - 18.80 0.09 0.59 15.50 99.18 2.99 - 1.03 0.05	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02 0.02 1.40	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05 - 0.97 -	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6.54 0.07 1.51 0.04 2.19 1.79 0.60	7 All 1.00 0.65 0.00 0.90 0.90 0.90	B B C C C C C C C C	55 55 55 55 55 55 55 96 96 96 96 96 96 96 96 96 96 96 96 96	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0 103 0 03 2 92 1 60 0	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1 .65 (03 .21 .81 .49 (Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 -22.00 0.07 - - 2.14 10.4 0.25 99.76 - 1.14 - - 0.10 0.89	28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.05 - 0.96 -	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33 0.03 1.94 2.00 0.36	Ab 62 63.50 - 23.10 0.00 - 3.24 9.45 0.33 99.62 2.81 - 1.20 - 0.15 0.82	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53 0.92 0.01 1.20
$\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{X}_2\text{O}\\ \underline{\sum}\\ \text{Si}\\ \text{Ti}\\ \text{Al}\\ \text{Fe}^{3^+}\\ \text{Fe}^{2^+}\\ \text{Mn}\\ \text{Mg}\\ \text{Ca}\\ \end{array}$	49 45.90 0.47 6.07 18.70 0.29 12.10 11.20 1.90 0.97 97.60 6.84 0.05 1.06 0.87 1.45 0.04 2.69 1.78	Kfs 50 64.20 - 18.80 0.09 0.59 15.50 99.18 2.99 - 1.03	8t 51 39.30 2.52 14.20 19.90 0.30 12.50 0.11 - 8.22 97.05 2.95 0.14 1.25 0.22 1.02 0.02 1.40	52 28.70 38.80 1.80 1.99 0.07 - 27.70 - 99.06 0.94 0.96 0.07 - 0.05 -	53 0 43.0 0 0.64 8.44 20.8 0.33 9.64 0 11.0 2.04 1.37 6.54 0.07 1.51 0.86 1.83 0.04 2.19	7 All 54 0 67.0 14 - 0 14 20.0 14 20.0 14 20.0 14 20.0 15 20.0 16 99.2 17 0.2 18 2.9 19 0.0 10 0.6 11 1.0 10 0.6 11 1.0 10 0.6 11 1.0 10 0.0 10 0.0	B B C C C C C C C C	55 55 55 55 55 55 55 96 55 96 6. 1. 1 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 3 .10 42 74 0 96 9 .80 20 21 0 86 9 .60 11 02 1 40 1 .69 97 44 6 09 0 62 1 61 0 18 1 03 0 03 2 92 1 60 0 27 0	57 2.80 6 .63 .59 1 0.40 (24 .85 .20 .67 1 .39 1 7.77 9 .43 2 .07 .70 1 .65 (03 .21 .81 .49 (Kfs 58 3.20 6 6 6 6 6 6 6 6 6	59 54.90 - 22.00 0.07 - - 2.14 10.4 0.25 99.76 2.86 - 1.14 - - 0.10	60 28.80 40.10 1.49 1.77 - 27.50 - 99.66 0.94 0.99 0.06 - 0.05 - 0.96	61 42.30 1.20 9.00 21.70 0.25 8.51 12.20 1.23 1.36 97.75 6.49 0.14 1.62 0.45 2.33 0.03 1.94 2.00	Ab 62 63.50 - 23.10 0.00 3.24 9.45 0.33 99.62 2.81 - 1.20 0.15	63 37.10 2.89 14.20 22.40 0.14 10.40 - 8.28 95.41 2.88 0.16 1.30 0.53 0.92 0.01 1.20

Примечание. І, ІІ — амфиболовый-афмфибол-биотитовый апомиаскитовый милонит (обр. НМ 9-13, Ал 1-15); ІІІ — гранатамфиболовый апомиаскитовый милонит (обр. Ал 6-13); ІV, V — биотит-амфиболовые сандыиты (обр. Ал 6а-13а, Ал 7-13); VІ, VІІ — амфибол-клинопироксеновые сандыиты (обр. СТ 08, НМ 7-13); VІІІ—ХІ — породы монцонитового состава (обр. Ал 2-13, Ал 3-13, Ал 4-13). Ab — альбит; Aln — алланит; Bns — банальсит; Bs — бастнезит; Bt — биотит; Cal — кальцит; Cpx — клинопироксен; Cnt — гранат; Cnt — горнблендит; Cnt — магнезиогастингсит; Cnt — полевой шпат; Cnt — нефелин; Cnt — титанит; Cnt — стрональсит. *f = FeO/(FeO + MgO).

Содержания РЗЭ и РЭ в минералах, мас. %: Nb₂O₅: Nb 7 - 1.40, Nb 13 - 0.97, Nb 24 - 2.39, Nb 29 - 0.36, Nb 34 - 0.76, Nb 42 - 0.89, Nb 48 - 2.20; Ce₂O₅: Nb 14 - 10.10, Nb 15 - 3.93, Nb 16 - 31.10, Nb 23 - 13.00, Nb 24 - 0.55, Nb 35 - 15.50, Nb 43 - 11.60, Nb 52 - 0.50; BaO: Nb 9 - 0.03, Nb 20 - 0.06, Nb 26 - 1.52, Nb 32 - 0.26, Nb 39 - 0.04, Nb 44 - 12.9, Nb 45 - 8.18, Nb 50 - 0.31, Nb 54 - 0.32, Nb 58 - 1.28; SrO: Nb 13 - 0.06, Nb 16 - 1.06, Nb 30 - 0.63, Nb 44 - 5.56, Nb 45 - 8.08; Cl: Nb 30 - 0.63; Nb 63 - 0.11.

Note. I, II – amphibole and amphibole-biotite apomiaskite mylonite (HM 9-13, $A\pi$ 1-15); III – garnet-amphibole apomiaskite mylonite ($A\pi$ 6-13); IV, V – biotit-amphibole sandyite ($A\pi$ 6a-13a, $A\pi$ 7-13); VI, VII – amphibole-pyroxene sandyite ($A\pi$ 6a-13a, $A\pi$ 7-13); VIII–XI – rocks of monzonite composition ($A\pi$ 2-13, $A\pi$ 3-13, $A\pi$ 4-13). Ab – albite; Aln – allanite; Bns – banalsite; Bs – bastnesite; Bt – biotite; Cal – calcite; Cpx – clinopyroxene; Car – garnet; Car – hornblende; Car – magnesiohastingsite; Car – k-Na – feldspar; Car – nepheline; Car – transmite; Car – transmite; Car – transmite; Car – Car

Concentration of REE and RE in the minerals, wt. %: Nb_2O_5 : Ne 7 - 1.40; Ne 13 - 0.97; Ne 24 - 2.39; Ne 29 - 0.36; Ne 34 - 0.76; Ne 42 - 0.89; Ne 48 - 2.20; Ce_2O_5 : Ne 14 - 10.1; Ne 15 - 3.93; Ne 16 - 31.10; Ne 23 - 13.00; Ne 24 - 0.55; Ne 35 - 15.50; Ne 43 - 11.60; Ne 52 - 0.50; BaO: Ne 9 - 0.03; Ne 20 - 0.06; Ne 26 - 1.52; Ne 32 - 0.26; Ne 39 - 0.04; Ne 44 - 12.90; Ne 45 - 8.18; Ne 50 - 0.31; Ne 54 - 0.32; Ne 58 - 1.28; SrO: Ne 13 - 0.06; Ne 16 - 1.06; Ne 30 - 0.63; Ne 44 - 5.56; Ne 45 - 8.08; Cl: Ne 30 - 0.63; Ne 63 - 0.11.

ния вокруг индивидов тарамита (рис. 4г). Для титанита в этих породах характерна оптическая зональность. Апатит встречается в виде индивидов от 0.006 мм (игольчатые включения в полевых шпатах) до 0.2 мм (короткопризматические индивиды среди основной ткани породы).

Амфиболы сандыитов представлены преимущественно тарамитом (f 68–76%) с умеренными количествами Al^{VI} – от 0.07 до 0.13 к. ф., характеризуются преобладанием $Fe^{2+}_{1.98-2.06}$ над $Mg_{1.2-1.5}$ в позиции C, $Na_{0.51-0.88}$ над $K_{0.4-0.44}$ в позиции A. От биотитамфиболовых сандыитов к пироксен-амфиболовым состав амфибола изменяется от тарамита к магнезиогастингситу (см. табл. 1, ан. 46), часть индивидов имеет составы, попадающие в область между видами тарамит—гастинсит (рис. 5а). Изменение состава амфиболов обусловлено увеличением концентраций Mg и Ca ($Ca_{(B)}$) – 1.24–1.53 к. ф.).

Эгирин–диопсид (f 72–81%) характеризуется колебаниями количеств Na от 0.24 до 0.51 к. ф. в позиции M_2 и повышенным содержанием Al — до 4.5 мас. % (Al(M_1)/Al(T) — 1.5–9.0). Компонентный состав минерала — $Jad_{6-19}Aeg_{11-40}Di_{54-70}$ — соответствует эгирин–диопсиду (рис. 5б).

Слюда группы биотита соответствует анниту (f 58–65). В анните из сандыитов отмечены широкие вариации алюминия (рис. 5в) и титана (0.08-0.13 к. ф.).

Титанит из сандыитов имеет более широкие вариации концентраций алюминия — от 0.07 до 0.23 к. ф. (см. табл. 1, ан. 48, 29), чем титанит из апомиаскитовых милонитов. Кальцит примечателен повышенными содержаниями стронция — до 0.63 мас. %. В пироксен—амфиболовых сандыитах обнаружены минералы группы банальсита—стрональсита в виде микровключений в нефелине (Медведева и др., 2016), с составом $Ba_{0.33-0.54}Sr_{0.34-0.49}$ $Ca_{0.5}Na_{2.03}K_{0.04-0.06}Al_{3.77-3.87}Si_{4.17-4.18}O_{16}$.

Породы монцонитового состава характеризуются мелкозернистой структурой (см. рис. 3г) и шлировидной, полосчатой текстурой. Минеральный состав,%: ортоклаз—микроклин — 40—50, амфиболы — 25—30, слюда группы биотита — 15—20, плагиоклаз — 15—10, акцессорные минералы (титанит, игольчатый апатит, циркон, кальцит и единичные зерна магнетита) — до 3. Микроскопическая структура матрикса породы лепидогетерогранобластовая со шлировидными скоплениями амфибола. Порода является протомилонитом. Порфирокласты микро-

клина и амфиболов – роговой обманки и гастингсита – составляют до 40% объема породы, они погружены в динамически перекристаллизованный мелкозернистый матрикс. Вокруг порфирокласт сформированы односторонние тени давления, крупные порфирокласты полевого шпата частично перекристаллизованы, хорошо выражены С–S–плоскости милонитизации (см. рис. 4е). Альбитизация проявлена слабо.

Ортоклаз-микроклин характеризуется соотношением $K_2O/Na_2O=12.3/26.0$ и вариативностью концентраций BaO от 0.31 до 1.28 мас. %. Альбит образует преимущественно мелкие индивиды или представлен в редких пертитах распада.

Амфиболы представлены магнезиальной роговой обманкой и магнезиогастингситом. Характеризуются низкими содержаниями алюминия A^{IVI} – от 0 до 0.31 к. ф., высокими Ca – от 1.7 до 2.0 к. ф. в позиции В, преобладанием Na над K в позиции A (см. табл. 1, ан. 49, 53, 56, 57, 61). Железистость роговых обманок варьирует от 46 до 59%, гастингсита – от 54 до 58%. Состав амфиболов в породах монцонитового состава изменяется от магнезиальной роговой обманки к магнезиогастингситу.

Слюды имеют устойчивый состав, занимающий позицию на границе видов аннит—флогопит (см. рис. 5в) с содержанием $Ti_{0.11-0.17}$, $Mg_{1.25-1.52}$ $Al^{VI}_{1.18-1.2}$ и низкими показателями f 46–55%.

ПЕТРОГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ САНДЫИТОВ И ПОРОД МОНЦОНИТОВОГО СОСТАВА

Химический состав изученных пород (табл. 2) позволяет отнести их к щелочному ряду основного и среднего состава. Химические составы сандыитов имеют широкие вариации и соответствуют области ийолитов — нефелиновых сиенитов (рис. 6), по минеральному составу они могут быть отнесены к группе лейкократовых и мезократовых щелочных пород малиньита—ийолита—уртита (Петрографический..., 2008). Породы монцонитового состава характеризуются пониженным содержанием K_2O , Na_2O , Al_2O_3 и повышенным — CaO, MgO по сравнению с таковым в апомиаскитовымх милонитах.

Общая тенденция изменений состава пород при переходе апомиаскитовый милонит \rightarrow сандыит или апомиаскитовый милонит \rightarrow породы монцонитового состава отмечена в уменьшении содержаний

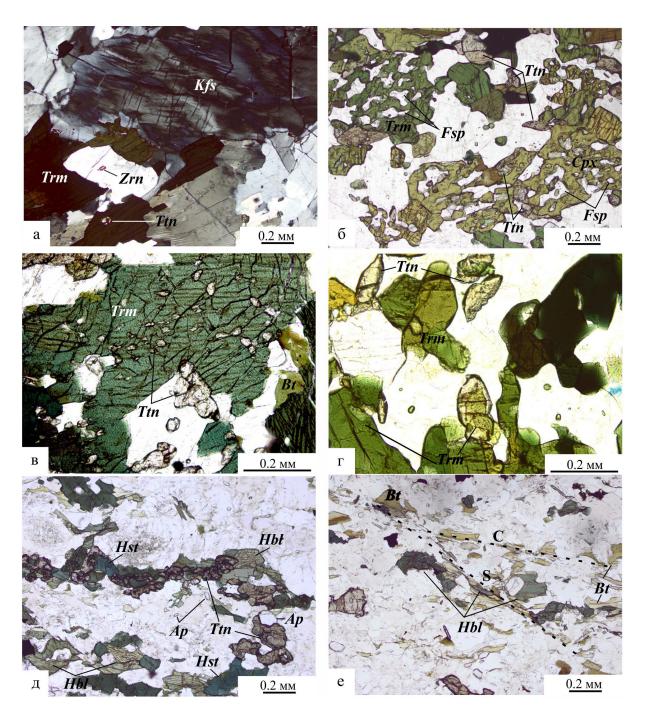


Рис. 4. Микроскопические особенности сандыитов и пород монцонитового состава.

В сандыитах: а — микропертиты (с анализатором); б — "симплектитоподобная" микроструктура; в — ситовидные зерна тарамита; г — тарамит с каймой титанита (без анализатора). В породах монцонитового состава (без анализатора): д — скопления титанита и амфиболов; е — биотит, маркирующий С- и S-плоскости милонитизации.

Fig. 4. Microscopic peculiarities of sandyites and from rocks monzonite composition.

In sandyites: a – microperthite (with analizer); δ – symplectite-like microtextural; B – cieve-like grain of taramite; Γ – taramite with rim of titanites (without analizer). In the rock monzonite composition: μ – amphibol-titanite assignments; E – biotite marking C-S-foliations.

 SiO_2 , Al_2O_3 , K_2O , а также увеличении TiO_2 , MgO, CaO и суммарного Fe (рис. 7, см. табл. 2). Сумма щелочей снижается от вмещающих апомиаскито-

вых милонитов (14.00–14.62 мас. %) к сандыитам (10.96–13.50 мас. %) и далее к породам монцонитового состава (9.39 мас. %). Для апомиаскитовых

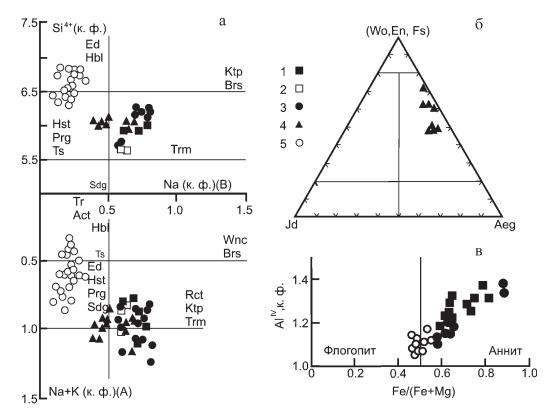


Рис. 5. Диаграммы составов.

а – амфиболы, б – пироксены, в – биотиты. Условные обозначения см. на рис. 2.

Fig. 5. Diagramm of the compositions.

a – amphiboles, δ – pyroxenes, B – biotites. Legend see at fig. 2.

милонитов характерно преобладание K_2O над Na_2O , а в сандыитах и породах монцонитового состава — Na_2O над K_2O .

Всем исследованным породам свойственны высокие концентрации РЗЭ (рис. 8а, см. табл. 2). Характер распределения отражает преобладание ЛРЗЭ над ТРЗЭ (La/Lu апомиаскитовые милониты: амфиболовые – 151.25–528.82, гранат-амфиболовые – 255.29; сандыиты: биотит-амфиболовые – 203.72–332.10, пироксен-амфиболовые – 406.67–440.44; породы монцонитового состава – 355.60–402.63). Отмечается слабый положительный максимум Gd для сандыитов и пород монцонитового состава. Поле пород монцонитового состава расположено между полями сандыитов и апомиаскитовых милонитов, приближаясь к концентрациям легких и средних РЗЭ в сандыитах.

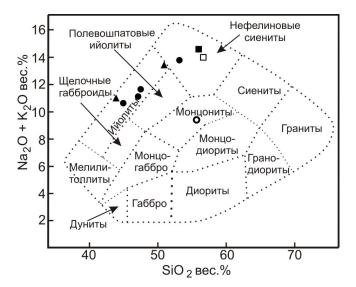
Распределение элементов—примесей отражает сходный характер распределения (рис. 8б, см. табл. 2) во всех группах пород и показывает высокие содержания крупноионных литофильных элементов Rb, Ba, Sr, Th и низкие содержания малоподвижных элементов группы железа Со, Си, W, Ni, Cr, а также Pb по отношению к хондриту. Сандыитам свойственны весьма высокие концентра-

ции Th, Nb, Ta, **Zr**, **Hf**, **Y**, **V**. **Породы монцонитово**го состава отличаются пониженными концентрациями Nb, Ta, Be и высокими – Rb, Li, Ni.

Характер распределения РЗЭ и редких элементов на спайдер-диаграммах (см. рис. 8а, б) соответствует породам континентальной коры (Интерпретация..., 2001). Метасоматические изменения в глубинных зонах, проявленные в различных структурах и динамических обстановках, характеризуются по двум группам источников элементов: привнесенные (мантийный источник) и наследуемые (перераспределенные) (Левицкий, 2005). К первой группе относятся K, Na, Rb, Sr, Ba, Pb, Zr, Ta, Nb, Hf, La, Ce; ко второй – Li, Be, Y, Yb, Cr, Ni, Co, V, Sc. Различия в концентрации высокозарядных и инертных элементов подтверждают различный исходный состав для пород ряда апомиаскитовый милонитсандыит и пород монцонитового состава. Учитывая направленность процессов преобразования, можно предположить, что исходным протолитом для пород монцонитового состава, вероятно, были диориты. Минералы-концентраторы редких и рассеянных элементов могли быть образованы: а) на этапе кристаллизации, б) при высокотемпературных постмагматических процессах, в) на этапе ультра-

Таблица 2. Химический состав миаскитов, сандыитов и пород монцонитового состава (мас. %, г/т)

Table 2. Chemical composition of miaskite, sandyite and rocks of monzonite composition (wt %, ppm)


Соединение	I	II	III		IV		V	VI	VII	IX	X	XI
SiO ₂	55.38	56.0	56.20	44.90	47.50	53.20	47.10	43.90	51.00	_	_	55.80
TiO ₂	0.35	0.73	0.30	3.79	2.75	1.02	2.50	3.18	1.63	_	_	1.39
Al_2O_3	20.75	21.70	22.10	16.30	17.10	21.00	17.20	17.50	20.50	_	_	16.40
Fe_2O_3	2.71	1.32	1.82	4.50	3.92	1.44	4.33	5.43	2.57	_	_	2.59
FeO	1.50	1.68	1.70	5.75	4.92	2.03	5.99	4.07	3.39	_	_	4.01
MnO	0.16	0.14	0.27	0.61	0.54	0.20	0.70	0.73	0.23	_	_	0.11
MgO	0.30	0.30	0.16	2.96	2.48	0.81	2.97	2.35	1.32	_	_	3.60
CaO	0.82	1.88	1.69	7.82	6.45	3.64	5.96	9.30	4.40	_	_	4.80
Na ₂ O	8.50	6.62	6.94	6.02	5.86	6.62	6.04	7.28	6.53	_	_	5.35
K_2O	7.70	8.00	7.14	4.66	5.86	7.24	5.14	3.68	6.94	_	_	4.04
H ₂ O	0.16	0.18	0.06	0.10	0.08	0.08	0.06	0.08	0.16	_	_	0.08
П. п. п.	0.78	0.62	0.52	1.14	1.64	1.78	1.02	1.20	0.66	_	_	0.18
P_2O_5	0.05	0.06	0.10	0.63	0.49	0.20	0.35	0.63	0.25	_	_	0.21
CO_2	_	_	0.33	0.86	1.01	1.03	0.06	0.93	_	_	_	0.21
Sum.	99.16	99.23	99.33	100.00	100.10	100.10	99.42	100.20	99.58	_	_	98.77
La	24.20	98.90	86.80	214.90	126.20	103.90	183.00	396.40	265.90	88.60	76.50	73.70
Ce	52.90	145.10	153.30	456.50	237.70	238.00	364.5	602.00	489.10	198.70	155.80	154.50
Pr	5.61	11.40	12.40	48.10	21.80	26.90	31.50	53.30	44.30	19.70	16.00	15.80
Nd	16.70	30.40	32.20	162.10	70.20	78.40	102.6	154.8	139.10	68.60	57.20	56.80
Sm	2.10	3.14	2.87	24.40	9.90	11.00	13.60	19.60	19.50	10.50	8.77	8.77
Eu	0.62	0.88	0.74	7.02	2.55	3.41	3.92	5.88	5.10	2.02	2.13	2.14
Gd	1.79	2.36	1.98	21.70	9.30	10.70	10.40	15.60	19.20	8.49	7.80	7.90
Tb	0.27	0.40	0.32	2.21	0.95	1.37	1.57	2.13	1.92	0.84	0.78	0.79
Dy	1.44	1.94	1.46	11.70	5.17	6.35	7.48	10.70	10.00	4.27	3.69	4.00
Но	0.30	0.37	0.29	2.51	1.02	1.33	1.31	1.98	2.12	0.80	0.74	0.70
Er	0.96	5.66	1.02	12.60	2.71	4.00	11.80	6.18	6.05	1.82	1.79	1.81
Tm	0.15	0.19	0.20	0.90	0.39	0.52	0.58	0.84	0.84	0.29	0.22	0.22
Yb	1.02	1.15	1.85	5.60	2.66	3.56	3.23	5.62	5.88	1.70	1.37	1.49
Lu	0.16	0.17	0.34	0.81	0.38	0.51	0.45	0.90	0.92	0.25	0.19	0.19
Rb	179.20	151.10	170.60	100.20	134.9	99.00	119.80	22.70	76.80	159.1	184.70	183.50
Th	3.46	13.40	11.20	36.10	19.50	13.80	13.70	27.10	32.20	23.2	9.78	9.57
U	2.76	1.81	1.05	2.09	1.79	1.43	1.78	4.58	3.59	3.40	2.45	2.78
Pb	2.09	5.26	1.63	4.06	6.33	10.90	1.35	1.66	2.88	6.44	12.80	7.37
Ba	409.10		70.50		2171.00	817.20	1727.00	370.80	218.30	1711.00	1934.00	
Nb	145.2	134.60	218.7	322.5	147.7	388.80	319.6	361.5	435.5	56.70	46.40	46.60
Ta	2.97	5.10	2.26	12.90	4.34	11.57	16.40	9.64	10.80	1.97	1.56	1.83
Be	3.14	3.17	4.75	10.73	5.55	14.10	2.59	11.50	8.33	2.96	2.51	2.75
W	0.10	0.02	0.02	0.29	0.57	0.02	0.02	0.31	0.12	0.44	0.56	0.51
Sr	796.30	353.70	907.30	1800	1771.0	694.80	1830	605.30	488.70	856.20	1112	1157
Zr	72.00	80.80	65.50	424.6	193.60	446.80	218.70	822.60	561.5	52.10	79.50	121.40
Hf	2.14	2.70	2.48	12.70	5.42	9.79	5.91	16.30	14.80	2.18	2.91	3.86
Li	5.16	4.69	3.14	15.30	5.93	14.80	8.87	6.04	6.26	10.10	25.90	28.20
Y	7.79	11.80	10.80	64.70	26.7	35.90	42.40	60.40	55.60	21.20	18.50	18.60
Cu	6.35	2.59	2.43	14.80	13.6	11.90	2.28	182.90	10.20	14.80	16.50	18.70
Sc	0.76	1.20	0.80	6.61	3.49	5.49	3.99	14.50	7.42	6.47	10.70	10.50
V	32.10	33.50	48.40	157.60	57.50	169.00	137.00	414.8	172.60	64.10	90.50	91.50
Co	1.39	1.32	1.19	11.45	4.69	8.07	7.27	19.90	10.90	14.00	20.30	20.50
Ni	6.37	2.65	1.13	7.24	6.65	14.90	6.97	4.93	4.33	15.50	32.07	29.80
Cr	7.27	8.56	4.94	36.50	13.90	73.60	9.95	80.20	5.80	12.20	30.70	26.30

Примечание. См. табл. 1.

Note. See table 1.

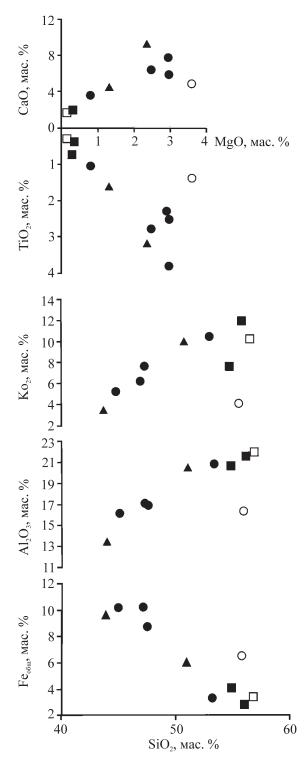
метаморфизма при частичном плавлении пород или после него. РЗЭ минерализация в исследуемых породах связана с флюидной проработкой тектонизи-

рованных пород в глубинных шовных зонах. Привнос и перераспределение компонентов при формировании сдвиговых зон осуществляются под воз-

Рис. 6. Классификационная диаграмма магматических пород.

Условные обозначения см. на рис. 2.

Fig. 6. SiO_2 – $Na_2O + K_2O$ classification rocks plot for the studied rocks.


Legend see fig. 2.

действием флюида, который появляется с момента образования первых деформаций и функционирует на протяжении всего периода их существования (Faulkner et al., 2010; Carter, Dworkin, 1990).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

ИММ сложен породами, которые были тектонизированы и метаморфизованы в условиях амфиболитовой фации метаморфизма (Trouw et al., 2010). Деструктивные процессы и процессы преобразования в них проходили с участием флюида при существенном влиянии щелочей и фтора, что значительно расширяет параметры *РТ*—условий минеральных преобразований. Изучение геохимических и кристалломорфических особенностей цирконов из мискитов (Краснобаев и др., 2016) позволяет сделать вывод о метасоматической природе уральских миаскитов. При этом исследованные породы характеризуются отчетливыми деформационными признаками и их можно отнести к классу милонитов или протомилонитов.

В.Я. Левин и Б.М. Роненсон рассматривают сандыиты как "линзовидные ксенолиты меланократовых амфиболовых и гранат-амфиболовых пород с нефелином, сохраняющие реликтовую структуру амфиболитов" (Левин и др., 1997). Сандыиты, изученные нами, по (Петрографический кодекс...2008) соответствуют группе малиньита—уртита и имеют постепенные переходы с вмещающими их апомиаскитовыми милонитами. При процессах милони-

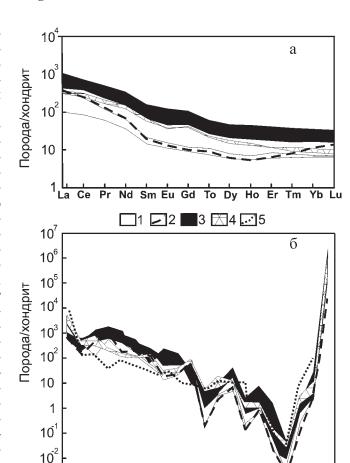
Рис. 7. Бинарные диаграммы распределения петрогенных компонентов в миаскитах, сандыитах и породах монцонитового состава.

Условные обозначения см. на рис. 2.

Fig. 7. Binary diagramms of distribution petrogenic components in miaskites, sandyites and rocks of monzonite composition.

Legend see fig. 2.

тизации в исследуемых породах возникают структуры пластичных деформаций, которые свидетельствуют о преобразованиях пород в условиях нижней коры. Д.С. Белянкин (1931) отмечает, что миаскиты повсеместно обладают гнейсовидностью и являются кристаллическими сланцами.


Химические составы основных породообразующих минералов апомиаскитовых милонитов, сандыитов и пород монцонитового состава имеют специфические особенности. Вариативность состава ортоклаз-микроклина и микроклина в этих породах фиксирует увеличение количеств Ва от 0.03-0.06 мас. % (в апомиаскитовых милонитах) до 1.52 мас. % (в сандыитах) и до 1.28 мас. % (в породах монцонитового состава). Изменение состава амфибола в сандыитах от тарамита к магнезиогастингситу фиксирует снижение Si и увеличение A1^{VI} (0.07–0.11 ф. е.), Ti (0.05–0.14), Ca (1.78–1.81 ф. е.). Слюды меняют состав от аннита к флогопиту, характеризуясь преимущественно промежуточными составами. В сандыитах и апомиаскитовых милонитах присутствует титанит со значительными колебаниями в составе алюминия (1.81-6.09 мас. % из сандыитов, 2.9-5.18 мас. % из апомиаскитовых милонитов). Широкие вариации алюминия в составе титанита позволяют связать это с влиянием флюида и соотношением в нем Н₂О/НF. Высокоглиноземистый титанит может образовываться не только в метаморфических породах ультравысоких давлений, но и в метаморфических породах умеренных и низких давлений при повышенной активности фтора, часто такой титанит является вторичным минералом (Тарарин и др., 2011). Перераспределение титана также отражается в обрастании титанитом индивидов амфибола.

В гранатовых апомиаскитовых милонитах присутствует андрадит, а в сандыитах — эгирин—диопсид, минералы, формирующиеся в широком диапазоне температур и отражающие привнос Са и Мg. В породах Вишнево-Ильменогорской сдвиговой зоны минералы андрадит и диопсид образуются наряду со скаполитом по породам основного состава вдоль тектонических контактов, вероятно, на этапе растяжения, образуя своеобразные "сварочные швы" структуры (Дубинина, Вализер, 2007).

Во всех породах присутствует альбит, возникающий на последних этапах среднетемпературных процессов.

Изменение состава основных породообразующих минералов апомиаскитовых милонитов, сандыитов и пород монцонитового состава отражает единство процессов преобразования.

Петрогеохимические особенности пород подчеркивают указанные изменения минерального состава, связанные с метасоматическими преобразованиями. От апомиаскитовых милонитов к сандыитам и породам монцонитового состава фиксируется снижение концентраций Al, Si, K, Na и увеличение — Ti, Ca, Mg, Fe, P3Э и PЭ. Характер распреде-

Рис. 8. Хондрит-нормализованные диаграммы распределения редкоземельных (а) и редких (б) элементов в изученных породах (Sun, 1982).

Pb U Th Nb Ta Be Sr Zr Hf Rb W Li Y Sc V Co Cr Ni Cr Ba

1 — амфиболовые, биотит-амфиболовые миаскиты; 2 — гранат-амфиболовые миаскиты; 3 — биотит-амфиболовые и амфибол-пироксеновые сандыиты; 4 — породы монцонитового состава; 5 — континентальная кора.

Fig. 8. Chondrite-normalized REE distibution of REE (a) and trace (δ) elements for studied rocks (Sun, 1982).

1 – amphibole, biotite-amphibole miaskites; 2 – garnet-amphibole miaskites; 3 – biotite-amphobole and amphibole-clinopyroxene sandyites; 4 – rocks.of monzonite composition; 5 – continental crust.

ления и высокие содержания РЗЭ и РЭ в сандыитах свидетельствуют об их мобильности и значительной роли корового вещества при формировании пород. Мобильность этих компонентов возрастает при активном влиянии флюида, увеличении в нем концентрации щелочей и фтора. Флюидная переработка объясняет высокое содержание в сандыитах акцессорных минералов-концентраторов РЗЭ, таких как ортит и титанит, и широкие вариации алюминия в этих минералах, что указывает на высокую щелочность среды и вероятное присутствие во флюиде фтора. Присутствие в сандыитах минералов группы банальсита—стрональсита свидетельствует о широком диапазоне температур при развитии метасоматических процессов. Экспериментальные исследования фиксируют температурный диапазон образования минералов этой группы от 250 до 700°С при низких давлениях, не превышающих 1 кбар (Прочие аналоги... 2003). Изменения состава минералов этой группы указывают на ослабление процессов минералообразования и связанный с этим изоморфизм Ва ↔ Sr и далее Sr ↔ Ca.

Различия в минеральном и химическом составе сандыитов и пород монцонитового состава объясняется различным исходным составом протолита. Для пород монцонитового состава исходным материалом, вероятно, были диориты, переработанные флюидом, сопровождающим динамотермальные процессы. Изменение от апомиаскитовых милонитов до сандыитов обеспечивалось повышенной проницаемостью и деформационными особенностями пород при схожих процессах.

Процессы метасоматоза и метаморфизма в ИММ полицикличны и сопровождают породы комплекса от палеозоя до мезозоя. Поздние преобразования связаны со сдвиговой тектоникой (270—240 млн лет), свидетельства которой проявлены в формировании зон милонитизации пород комплекса (Медведева и др., 2013).

ВЫВОДЫ

Структурно-текстурные, минералогические и петрогеохимические особенности изученных пород отражают генетическую связь апомиаскитовых милонитов и сандыитов. Разница в минералогических и геохимических параметрах позволяет утверждать, что сандыиты ИММ представляют собой продукт метасоматического изменения вмещающих апомиаскитовых милонитов, преобразованных в поздних линейных тектонически ослабленных зонах.

Породы монцонитового состава являются ортопородами, сохранившими фрагменты первичных структур, сформировавшимися, вероятно, синхронно с сандыитами под влиянием полистадийных тектоно-метаморфических процессов.

СПИСОК ЛИТЕРАТУРЫ

- Белянкин Д.С. (1931) К петрографии Среднего Урала. *Тр. Гл. геол.-развед. упр. ВСНХ СССР.* Вып. 56. М.; Л., 47-62.
- Ворощук Д.В. (2001) Полевые шпаты гранитоидных бластомилонитов: микроструктурные особенности и вариации химического состава. *Ежегодник-2000*. Екатеринбург: ИГГ УрО РАН, 102-110.
- Дубинина Е.В., Вализер П.М. (2007) Скаполитсодержащие породы ильменогорского комплекса (Южный Урал). Записки РМО, (1), 108-118.
- Заварицкий А.Н. (1939) Геологический и петрографиче-

- ский очерк Ильменского минералогического заповедника и его копей. М.: Гл. упр. по заповедн., 196 с.
- Интерпретация геохимических данных (2001). Под ред. Е.В. Склярова. М.: Интермет Инжиниринг, 288 с.
- Кошевой Ю.Н. (1985) История формирования и структурная эволюция ильменогорского комплекса. Рукопись. Фонды ИГЗ, 313 с.
- Краснобаев А.А., Вализер П.М., Бушарина С.В., Медведева Е.В. (2016) Цирконология миаскитов Ильменских гор (Южный Урал). *Геохимия*, (9), 797-813.
- Левин В.Я. (1974) Щелочная провинция Ильменских-Вишневых гор. М.: Наука, 221 с.
- Левин В.Я., Роненсон Б.М., Самков В.С. и др. (1997) Щелочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 274 с.
- Левицкий В.И. (2005) Петрология и геохимия метасоматоза при формировании континентальной коры. Новосибирск: ГЕО, 340 с.
- Медведева Е.В., Немов А.Б., Котляров А.В. (2013) Милонитизированные породы ильменогорского комплекса (Ю. Урал). *Вести. ИГ Коми НЦ УрО РАН*, (11), 7-10.
- Медведева Е.В., Немов А.Б., Котляров А.В. (2016) Банальсит-стрональсит из сандыита Ильменогорского миаскитового массива (Южный Урал). Минералогия, (1), 3-8.
- Немов А.Б., Медведева Е.В., Котляров В.А. (2015) Редкометалльная и редкоземельная минерализация милонитов Ильменогорского миаскитового массива (Южный Урал). Онтогения, филогения, система минералогии. Миасс: ИМин УрО РАН, 141-145.
- Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования (2008). СПб.: ВСЕГЕИ, 200 с.
- Прочие аналоги полевых шпатов (2003). *Минералы. Справочник*. Т. 5, вып. 1. М.: Наука, 567-576.
- Русин А.И., Краснобаев А.А., Русин И.А., Вализер П.М., Медведева Е.В. (2006) Щелочно-ультраосновная ассоциация Ильменских-Вишневых гор. *Геохимия, петрология, минералогия и генезис щелочных пород.* Мат-лы Всерос. сов. Миасс: ИМин УрО РАН, 222-227.
- Тарарин И.А., Бадрединов З.Г., Чубаров В.М., Шарова О.И. (2011) Гротит гранат-слюдистых кристаллических сланцев шихтинской свиты Срединно-Камчатского массива. Докл. АН, **438**(6), 809-812.
- Carter K.E., Dworkin S.I. (1990) Channelized fluid flow through shear zones during fluid-enhanced dynamic recrystallization, Northern Apennines, Italy. Geology, 18, 720-723.
- Faulkner D.R., Jackson C.A.L., Lunn R.J., Schlische R.W., Shipton Z.K., Wibberley C.A.J., Withjack M.O. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. *J. Structural Geol.* 32, 1557-1575.
- Hetzel R., Glodny J. (2002) A crustal-scale, orogen-parallel strike-slip fault in the Middle Urals: age, magnitude of displacement, and geodynamic significance. *Int. J. Earth Sci.*, **91**(2), 231-254.
- Sun S.S. (1982) Chemical composition and origin of the Earth's primitive mantle. *Geochim. Cosmochim. Acta*, **46**(1), 179-192.
- Trouw R.A.J., Passchier C.W., Wiersma D.J. (2010) Atlas mylonites and related microstructures. Berlin: Springer, 322.

REFERENCES

- Belyankin D.S. (1931) To petrography of Middle Urals. *Trudy. Glavnogo geologo-razvedochnogo upravleniya VSNKH SSSR*. [Proc. of the Chief Geological Exploration Department VSNKH SSSR]. V. 56. Moscow, Leningrad, 47-62. (In Russian)
- Carter K.E., Dworkin S.I. (1990) Channelized fluid flow through shear zones during fluid-enhanced dynamic recrystallization, Northern Apennines, Italy. Geology, 18, 720-723
- Dubinina E.V., Valizer P.M (2007) Skaploite-contain rocks from Ilmenogorsky complex. *Zapiski RMO*, (1), 108-118. (In Russian)
- Faulkner D.R., Jackson C.A.L., Lunn R.J., Schlische R.W., Shipton Z.K., Wibberley C.A.J., Withjack M.O. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct.l Geol., 32, 1557-1575.
- Hetzel R., Glodny J. (2002) A crustal-scale, orogen-parallel strike-slip fault in the Middle Urals: age, magnitude of displacement, and geodynamic significance. *Int. J. Earth Sci.*, **91**(2), 231-254.
- Interpretatsiya geokhimicheskikh dannykh (2001) (Ed. E.V. Sklyarov) [The interpretation of geochemical data]. Moscow, Intermet Inzhiniring Publ., 288 p. (In Russian)
- Koshevoi Yu.N. (1985) Istoriya formirovaniya i strukturnaya evolyutsiya il'menogorskogo kompleksa [History of formation and structural evolution of Ilmenogorsky complex]. Unpubl. Miass, Ilmenskiy gosudarstvennyi zapovednic AN SSSR, 313 p. (In Russian)
- Krasnobaev A.A., Valizer P.M., Busharina S.V., Medvedeva E.V. (2016) Zirconology of miaskites from Ilmeny Mauntains (South Ural). *Geokhimiya*, (9), 797-813. (In Russian)
- Levin V.Ya. (1974) Shchelochnaya provintsiya Il'menskikh-Vishnevykh gor [Alkaline province of Ilmen-Vishnevye mountains]. Moscow, Nauka Publ., 221 p. (In Russian)
- Levin V.Ya., Ronenson B.M., Samkov V.S., Levina I.A., Sergeev N.S., Kiselev A.P. (1997) Shchelochno-karbonatitovye kompleksy Urala [Alkaline carbonatite complexes of the Urals]. Ekaterinburg, Uralgeolkom Publ., 274 p. (In Russian)
- Levitsky V.I. (2005) Petrologiya i geokhimiya metasomatoza pri formirovanii kontinental'noy kory [Petrology and geochemistry of metasomatism while continental crust formating]. Novosibirsk, Geo Publ., 340 p. (In Russian)

- Medvedeva E.V., Nemov A.B., Kotlyarov A.V. (2013) The mylonite rocks from the Ilmenogorsky complex (the Southern Urals). *Vestn. IG Komi NC UrO RAN*, (11), 7-10. (In Russian)
- Medvedeva E.V., Nemov A.B., Kotlyarov A.V. (2016) Banalsite–stronalsite in sandyites from Ilmenogorsky miaskite massif (the Southern Urals). *Mineralogiya*, (1), 3-8. (In Russian)
- Nemov A.B., Medvedeva E.V., Kotlyarov A.V. (2015) A rare-metal and rare earth mineralization of miaskite milonites from Ilmenogorsky miaskite massif (the Southtern Urals). *Ontogeniya, filogeiya, sistema mineralogii*. [Ontogeny, phylogeny, mineralogy system] Miass, IMin UrO RAN, 141-145. (In Russian)
- Other analogs of feldspars (2003) *Mineraly. Spravochnik* T. 5, Vyp. 1. Moscow, Nauka Publ., 567-576. (In Russian)
- Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (2008) [The Petrographic kode of Russia. Magmatic, metamorphic, metasomatic, impacted formations]. St.Petersburg, VSEGEI Publ., 200 p. (In Russian)
- Rusin A.I., Krasnobaev A.A., Rusin I.A., Valizer P.M., Medvedeva E.V. (2006) Alkaline-ultrabasic association of Ilmeny-Vishnevye Mountains. *Geokhimiya, petrologiya, mineralogiya i genezis shchelochnykh porod. Materialy Vserossiiskogo soveshchaniya* [Geochemistry, Petrology, Mineralogy and genesis alkaline rocks. Proc. All-Russian Konf.]. Miass, IMin UrO RAN, 222-227. (In Russian)
- Sun S.S. (1982) Chemical composition and origin of the Earth's primitive mantle. *Geochim. Cosmochim. Acta*, **46**(1), 179-192.
- Trouw R.A.J., Passchier C.W., Wiersma D.J. (2010) Atlas mylonites and related microstructures. Berlin: Springer, 322.
- Voroschuk D.V. (2001) Feldspars of granitoid blastomilonites: microstructural features and variations of chemical composition. *Ezhegodnik-2000*. Ekaterinburg, IGG UrO RAN, 102-110. (In Russian)
- Zavaritsky A.N. (1939) Geologicheskii i petrograficheskii ocherk Il'menskogo mineralogicheskogo zapovednika i ego kopei [Geological and petrographical sketch about Ilmensky mineralogical reserve and its pits]. Moscow, Glavnoe upravlenie po zapovednikam. Publ., 196 p. (In Russian)
- Tararin I.A., Badredinov Z.G., Chubarov V.M., Sharova O.I. (2011) Grotit from garnet-mica crystalline schist Shikhtinskaya Formation Middle-Kamchatskii massif. *Dokl. Akad. Nauk*, **438**(6), 809-812. (In Russian)