КРАТКИЕ СООБЩЕНИЯ

УДК 551.7:56(113.5)(470.5)

СОВЕРШЕНСТВОВАНИЕ СТРАТИГРАФИЧЕСКИХ СХЕМ КАРБОНА УРАЛА ПО ФОРАМИНИФЕРАМ И ВОДОРОСЛЯМ

© 2014 г. Р. М. Иванова

Институт геологии и геохимии Уральского отделения РАН 620075 г.Екатеринбург, пер. Почтовый, 7 E-mail: ivanovarm@jgg.uran.ru

Поступила в редакцию 11.04.2014 г.

В нижнем карбоне Урала используются две стратиграфические схемы: одна для западного, другая – для восточного склона, хотя они очень близки или даже идентичны по составу микрофауны и зональным формам, поэтому автор предлагает единую шкалу для нижнего карбона Урала и Русской платформы. При расчленении каменноугольных отложений Урала, кроме фораминифер, использованы известковые водоросли. По ним выделено 10 биозон. По альгофлоре отчетливо фиксируются границы систем, отделов, ярусов и подъярусов (редко – горизонтов).

Ключевые слова: *карбон, Урал, стратиграфические схемы, зоны, фораминиферы, известковые водоросли.*

К настоящему времени принято решение о подразделении каменноугольной системы на две подсистемы: миссисипскую и пенсильванскую [1]. Утверждены их границы (GSSP). Что касается деления на отделы, то окончательного решения пока нет. В последних проектах сохраняются все традиционные ярусы карбона от турнейского до гжельского. Московские палеонтологи горизонты московского яруса перевели в подъярусы [2]. Примерно также поступила Е.И. Кулагина с башкирским ярусом на Южном Урале [10], с чем не все стратиграфы согласны

Зональная шкала карбона базируется на аммоноидеях, фораминиферах и в последние десятилетия — на конодонтах, зоны которых выделены в Европе и США, но аммоноидеи и конодонты встречаются у нас редко, поэтому практическое применение разработанных по ним зональных схем затруднено. Пока можно уверенно сказать, что по фораминиферам все ярусы хорошо прослеживаются на всей территории Тетиса и за его пределами, исключая Бореальный пояс.

На Урале в нижнем карбоне действуют две стратиграфические схемы: одна для западного, другая — для восточного склона (табл.1). Они очень близки или даже идентичны по составу микрофауны и зональным формам не только на Урале, но и на Восточно-Европейской платформе, что подтверждает справедливость предложения об использовании единой шкалы для обоих склонов [4], тем более, что на западном склоне Урала уже принята большая часть названий платформенных горизонтов. О применении единой шкалы для Урала и Русской платформы в карбоне неоднократно высказы-

валась в свое время Н.П. Малахова [11, 12]. Автору представляется нецелесообразным сохранение в схеме маломощного гумеровского горизонта на границе девона и карбона. Он с трудом прослеживается и, по конодонтовой зоне Siphonodella sulcata, соответствует верхнему девону, а не карбону. По фораминиферам нижняя граница визе в ОСШ установлена по появлению Eoparastaffella simplex, поэтому косьвинский горизонт включен в турне, хотя обновленный состав водорослей этот уровень не подтверждает.

На роль претендента глобального стратотипа нижней границы серпуховского яруса предлагается разрез Верхняя Кордаиловка на Южном Урале, где одновременно встречены аммоноидеи, конодонты (Lochriea ziegleri), единичные фораминиферы, остракоды, кораллы и другая фауна [13].

Граница нижнего и среднего карбона (миссисипия и пенсильвания) уже почти не вызывает разногласий. Она устанавливается по основанию генозоны Homoceras—Hudsonoceras, первому появлению конодонтов *Declinognathodus noduliferus* (разрез Эрроу-Каньон, США), фораминиферовой зоне Plectostaffella bogdanovkensis. На Южном Урале зона D. noduliferus подразделена на подзоны Early и Late.

Средний карбон представлен на Урале башкирским и московским ярусами, которые характеризуются резкой фациальной изменчивостью и неравномерной насыщенностью органическими остатками. Биостратиграфической основой расчленения являются зональные комплексы фораминифер. Название горизонтов башкирского яруса даны в соответствии со Стратиграфической схе-

Таблица 1. Стратиграфическая схема нижнего карбона Урала **Table 1.** Stratigraphic scheme of the Lower Carboniferous of the Urals

Отдел	Ярус	Подъярус	Ура	падно- льский регион	Восто Ураль субре	ский	Насто	ящая работа	ОСШ [Постановления	России МСК, 2008]
0	В	Под		Гориз	онты		Водорослевые зоны	Фораминиферовые зоны	Горизонты	Фораминиф. зоны
	кий	Верхний		гаро- инский	Черны	шевский	Ungdarella	Monotaxinoides transitorius	Запалтюбинский	Monotaxinoides transitorius
l	уховс	Bep	Про	гвинский	Худола	зовский	uralica- Fasciella	Eostaffellina protvae- Eostaffella mirifica	Протвинский	Eostaffellina paraprotvae
	Серпуховский	Нижний	Кос	огорский	Сунту	рский	kizilia	Neoarchaediscus parvus- Janischewskina delicata	Тарусский Стешевский	Neoarchaediscus postrugosus
ый			Вен	евский		нович- ий	Calcifolium	Endothyranopsis sphaerica- Eostaffella tenebrosa	Веневский	Eostaffella tenebrosa
ПБП		,_	Миха	йловский	Авері	инский	okense- Koninckopora	Eostaffella ikensis	Михайловский	Eostaffella ikensis Eostaffella proikensis
HOYFO	ский	Верхний	Алек	ссинский	Камен ураль		inflata	Endothyranopsis crassa- Parastaffella luminosa	Алексинский	Formensis
НИЖНЕКАМЕННОУГОЛЬНЫЙ	изейс		Тул	ьский	Жуко	вский	Palaeoberesella lahuseni-	Endothyranopsis compressa- Archaediscus krestovnikovi	Тульский	Endothyranopsis compressa - Pararchaediscus koktjubensis
1ЖHE	Bı	Ж	Бобриков- ский	Дружини- нский	Устьгр	еховский	Exvotarisella index	Uralodiscus rotundus-	Бобриковский	Uralodiscus rotundus
H		Нижний		Илычс- кий	Бурл	инский		U. primaevus		
		H	Радае- вский	Пестерь- ковский	Обруч	чевский	Kamaena lata-	Eoparastaffella simplex	Радаевский	Eoparastaffella simplex - Eoend. donica
ı				I/o ov n	инский		Nanopora woodi	Eoparastaffellina rotunda	Косьвинский	Endothyra elegia -
ı	й	ĭΪ		Косьв	инскии			Eotextularia diversa		Eotextularia diversa
ı	ски	верхний Spinoendothyra		Кизеловский	Spinoendothyra costifera					
ı	ней	В				нижний		Latiendothyra latispiralis	Miscolobekini	Palaeospiro- plectammina
	y p		Чер	епетский	Перш	инский	Kamaena delicata- Kamaona	Chernyshinella glomiformis	Черепетский	tchernyshinensis
	L	П	y i	пинский	ской	верхний	Kamaena magna	Chernyshinella disputabilis	Упинский	Chernyshinella disputabilis
		Нижний	Ma	левский	Режевской	нижний		Bisphaera malevkensis- Earlandia minima	Малевский	Bisphaera malevkensis- Earlandia minima
		Ни		Гумер	овский			Tournayellina pseudobeata	Гумеровский	Tournayellina pseudobeata

мой Урала 1993 г. [16], для московского яруса использованы подразделения ОСШ карбона России 2003 г. [14], поскольку принципиальных отличий от уральской схемы она не имеет и хорошо известна всем карбоноведам мира.

В настоящее время изученность башкирского яруса такова, что он являет собой редкий пример совпадения горизонтов и зон, кроме ташастинского горизонта (их здесь две) [7] (табл. 2). Е.И. Кула-

гиной с соавторами [10] предложен и утвержден несколько измененный вариант расчленения башкирского яруса на четыре подъяруса: сюранский, акавасский, аскынбашский и архангельский, что противоречит Стратиграфическому кодексу и устоявшейся практике соподчинения внутриярусных подразделений. По кодексу следует, что "названия подъярусам даются по их относительному положению в ярусе: нижний и верхний – при двухчлен-

112 ИВАНОВА

Таблица 2. Стратиграфическая схема среднего и верхнего карбона Урала **Table 2.** Stratigraphic scheme of the Middle and Upper Carboniferous of the Urals

цел	yc	ярус	Горизонты	Южный Урал	Средний и Северный Урал	Урал	ОСШ
Отдел	Ярус	Подъярус	торизонты	Фузулинидовые зон Постановления		Водорослевые зоны [Иванова, 2008, 2013]	Фузулинидовые зоны [Алексеев и др., 2013]
IЙ	Ĭ,		Никольский	Daixina bos Globifusulii			Daixina bosbytauensis - Globifusulina robusta
ТЬНЬ	ский		Мартукский	Daixina so	kensis		Daixina sokensis
VIO)	Гжельский			Jigulites ju	gulensis	Eugonoophyllum johsoni –	Jigulites jugulensis
ВЕРХНЕКАМЕННОУГОЛЬНЫЙ			Азанташский	Rauserites Rauserites stu		Paraepimastopora kansasensis	Rauserites rossicus - Rauserites stuckenbergi
KAMI	кий		Кержаковский	Rauserites qua			Rauserites quasiarckticus
XHE	Касимовский		Орловский	Montiparus me	ontiparus		Montiparus montiparus
BEI	Каси		(Ломовский)	Protriticites pseudomontiparus - Obsoletes obsoletus	Kanmerai ozawai - Usvaella usvae		Protriticites pseudomontiparus - Obsoletes obsoletus
			Мячковский	Praeobsoletes Fusulina	Pulchrella pulchra -		Fusulina cylindrica - Protriticites ovatus
	й	ий	WIN MODERNIA	Fusulina cylindrica Fusulinella bocki Kamaina kamensis-	Fusulinella bocki	Uraloporella variabilis -	Fusulinella bocki
IЙ	КОВСКИ	Верхний	Подольский	Kamaina kamensis- Putr. brazhnikovae Fusulinella vozhgalensis	Wedekindellina uralica	Macroporella ginkeli	Kamaina kamensis - Fusulinella colaniae - F. vozhgalensis
СРЕДНЕКАМЕННОУГОЛЬНЫЙ	M 0 C F	Нижний	Каширский	Fusulinella colaniae Pulchrella subpulchra - Beedina schellwieni - F. schubertellinoides	Fusulinella schubertellinoides - Taitzehoella librovichi	Dvinella comata - Beresella	Pulchrella subpulchra
TEHH		Ни	Цнинский	Priscoidella p	riscoidea	polyramosa	Priscoidella priscoidea
EKAN			Верейский	Depratina į Aljutovella a			Aljutovella aljutovica
РЕДН	ий	ий	Асатаусский	Verella s Tikhonovichella (Alju		Donezella	Verella spicata - T. (Al.) tikhonovichi
	кирски	Верхний	Ташастинский	Pseudostaffella gorskyi- Ozawainella pararhomboidalis	T. rhombiformis - Pr. primitiva Ozawainella pararhomboidalis	lunaensis - Dvinella distorta	Tikhonovichiella rhombiformis Pseudostaffella gorskyi- Profusulinella primitiva
	аш		Аскынбашский	Pseudostaffella Staffellaeformis	praegorskyi -		Ps. praegorskyi - St. staffellaeformis
	P	Нижний	Акавасский	Pseudostaffella Pseudostaffell	antiqua grandis - la antiqua	Donezella lutugini	Pseudostaffella antiqua
		Ни	Сюранский	Semistaffella variabilis- S. minuscularia	Eost. postmosquensis- Plectostaffella jakensis] [Semistaffella variabilis - S. minuscularia
			Богдановский	Plectostaffella bogd	anovkensis		Pl. bogdanovkensis

ном делении яруса" или "нижний, средний, верхний—при трехчленном делении". Не следует забывать, что подъярусы в понимании стратиграфовзападников равны зонам. Это нарушение Кодекса касается и вновь выделенных москвичами подъярусов московского яруса.

Отложения московского яруса, как и башкирского, вытянуты вдоль Урала более чем на 1000 км, захватывая Мугоджары, с явным преобладанием грубообломочных красноцветов на севере и карбонатных пород на юге. Ярус расчленяется нами на 5 горизонтов (верейский, цнинский, каширский, подоль-

ский, мячковский), 9 фузулинидовых и 2 водорослевые зоны [6]. Своебразие палеогеографических обстановок Урала сформировало 2 типа фузулинидовых сообществ московских морей: южный и северный. Южная ассоциация фузулинид характеризуется обилием фузулин и путрелл, северная— ведекинделлинами, фузулинеллами и пульхреллами. Зональный состав фузулинидовых ассоциаций среднего карбона Урала сформировался под влиянием фаун нескольких биогеографических зон, но их основу составляют фузулиниды Восточно-Европейского бассейна, на юге с заметным влиянием среднеазиатско-донецких форм, на севере – гренладско-американских иммигрантов, что особенно четко проявилось в московский век.

По фузулинидам основание московского яруса традиционно проводится по появлению Aljutovella aljutovica Raus., которая по фациальным причинам не всегда встречается в самом основании яруса (рр. Аскын, Исеть, разрез Волимской скв. 1 в Пермской области и др.). В некоторых разрезах Среднего (р. Исеть) и Южного (рр. Большой Уртазым и Ташла) Урала хорошим репером границы башкирского и московского ярусов являются Eofusulina triangular Raus et Bel. Верейская ассоциация фузулинид отличается довольно устойчивым составом на всей территории Урала и различается в разных районах только по количественным соотношениям псевдоштаффелл, профузулинелл, депратин, особенно Depratina prisca (Deprat) и альютовелл [7]. Зональными формами данного горизонта являются Depratina prisca – Aljutovella aljutovica. Во всех сравниваемых регионах (Московская синеклиза, Донбасс, Казахстан, Средняя Азия. кроме Тимано-Печорской провинции) обращает на себя внимание постоянное присутствие среди зональных видов Al. aljutovica,. По мнению Е.И. Кулагиной [9], верхнюю часть асатаусского горизонта башкирского яруса, где доминирующая роль принадлежит типичным Depratina prisca, следует считать московской (разрезы "Сокол", "Аскын", "Серять", "Уклыкая"), и нижняя зона московского яруса должна отвечать зоне Depratina prisca. Кстати, D. prisca не известна в верейском горизонте Подмосковья.

Самая выдержанная на Урале зона *Priscoidella priscoidea*, которая соответствует цнинскому горизонту, выделенному нами впервые на Урале в 2002 г., не содержит предствителей рода *Hemifusulina* [7], в оличие от одновозрастных отложений Восточно-Европейской платформы. На Урале они появляются позднее — в позднемосковское время.

Верхний карбон на Урале представлен касимовским и гжельским ярусами и 6 фузулинидовыми зонами. В большинстве районов нижняя граница позднего карбона фиксируется первым появлением *Obsoletes* и массовыми *Protriticites*, но эта закономерность касается только южных районов Урала. В северной части Среднего, Северном, Припо-

лярном и Полярном Урале, на восточном склоне Северного Тимана начало верхнего карбона подчеркивается появлением 5 родов подсемейства Pulchrellinae (Kanmeraia, Usvaella, Eowariengella, Pseudofusulinella, Dagmarae) наряду с очень редкими Protriticites или Obsoletes или вообще без них. Таким смешанным типом фузулинидовых сообществ подчеркивается палеогеографическая позиция Урала, находящегося в зоне конвергенции водных масс. Подошва гжельского яруса традиционно связывается с фузулинидами Rauserites rossicus—R. stuckenbergi.

В последние 20-25 лет предпринимаются попытки использовать в био- и зональной стратиграфии каменноугольной системы ее альгофлору [3, 6, 8, 9, 17, 18]. В карбоне Урала автором выделено 10 водорослевых зон [6-8]. Они обладают меньшим стратиграфическим потенциалом, чем фораминиферы и конодонты, и устанавливают возраст чаще всего до подъяруса, редко – до горизонта, но во многих разрезах альгофлора является единственным палеонтологическим материалом (особенно в Сибири), позволяющим делать выводы о возрасте вмещающих пород. Объяснение подобному явлению кроется в антогонистических отношениях водорослей с беспозвоночными. С возрастанием роли водорослей в биоценозах заметно уменьшается значение микро- и макрофауны.

При выделении зон альгофлоры не удается выдержать какой-либо один принцип. Некоторые из них по смыслу видовые, например, зоны Катаепа delicata (турнейский ярус) и Donezella lutugini (нижнебашкирский подъярус), другие - комплексные биостратиграфические зоны: Calcifolium okense-Koninckopora inflata (верхний визе), Ungdarella uralica–Fasciella kizilia (серпуховский Uraloporella variabilis-Macroporella ginkeli (Bepxнемосковский подъярус). Далеко не равнозначен и объем выделенных зон. В одних случаях зона отвечает горизонту (Fasciella kizilia, например, веневскому), хотя это бывает довольно редко, в других подъярусу, ярусу или отделу (зона Eugonophyllum johnsoni–Paraepimastopora kansasensis – верхнему карбону).

В пределах одного бассейна седиментации зональное расчленение на основании водорослей более точное и детальное и альгофлора вполне успешно может доминировать в биоценозах с другими группами ископаемых организмов. Некоторые из десяти водорослевых зон карбона можно использовать для межрегиональной и межконтинентальной корреляции с территориями Западной и Восточной Европы, Канады и Северной Америки. В турне таковой является зона Kamaena delicata, в визе — Calcifolium okense—Koninckopora, в серпухове — Ungdarella uralica—Fasciella kizilia, в башкирском ярусе — Donezella lutugini, в нижнемосковском подъярусе — Dvinella и Beresella, в верх-

114 ИВАНОВА

D_3 fm	Турнейский ярус	ий ярус		ій ярус	Серпуховский	Башкирск	Башкирский ярус	Московский ярус	ий ярус	Касимовский
Лытвинский	נינ		5	>	S ₁ ⊃ 2√GK	72	- 1	ر ار	- 1	и гжельскии
горизонт	Нижний	Верхний	Нижний	Верхний		Нижний	Верхний	Нижний	Верхний	ярусы С3
Shuguria										
Girvanella										Tubiphytes
	Kamaena									Paraepimastopora
			Palaeoberese lla	Ila					Pseudoep	Pseudoep mastopora
		⁻	Exvotarisella							Clavaporella
		⁻	Nanopora							Macroporella
				Zidella	 					Gyroporella
Issinella										Globuliferoporella
					Anthracoporella					
				Calcifolium					Ivanovia	
				Fasciella						Anchicodium
					Frustulata					Eugonophyllum
					Kulikaella					
					Kulikia					
			Y	oninckopora	<u>-</u>					
					Praedonezella				Uraloporella	
					Claracrusta					
						Donezella				
						Dvinella				
						Beresella				
						Epimastopora	n.			
Solenopora				Ungdarella						
Parachaetetes						Urtasimella				
						 		Komia		
		Stacheoides								
					Pseudostacheoides					
						Eflugelia				
						Mametella				
						Peristacheia				
Menselina						Masloviporidium	Tum		_	
			Насто	T.0	Обычно		——— Релко			

Fig. 1. Change in the algae composition on the boundaries of subsystems, stages and substages of the Carboniferous in the Urals. Рис. 1. Изменение состава водорослей на границах отделов, ярусов и подъярусов карбона Урала.

немосковском — *Macroporella*, в позднем карбоне — *Tubiphytes, Eugonophyllum* и *Paraepimastopora*.

По альгофлоре отчетливо фиксируются границы девона и карбона, нижнего и среднего, среднего и верхнего отделов карбона, границы ярусов и подъярусов (рис. 1). Следует отметить несколько заметных возрастных рубежей в изменении водорослевых ассоциаций. Переходные от девона к карбону слои с фораминиферами Quasiendothyra kobeitusana (лытвинский горизонт) содержат в большом количестве синезеленые водоросли, особенно своеобразные Shuguria flabelliformis lata Tchuv., красные из семейства Solenoporaceae (Solenopora и Parachaetetes), а также проблематики Menselina, которые больше нигде не встречаются.

По мнению автора, водорослевое сообщество косьвинского горизонта следовало бы относить к визе, как было ранее, а не к турне [14], поскольку оно обновляется 10 новыми родами зеленых водорослей (Subkamaena, Crassikamaena, Parakamaena, Pseudokamaena, Brazhnikovae, Stylaella, Palaeoberesella, Exvotarisella, Dokutchaevskella, Nanopora) и двумя цианобактерий (Bevocastria, Stipulella), хотя черты преемственности с турнейской микрофлорой очевидны. Косьвинскому горизонту могла бы отвечать зона Kamaena delicata—Issinella devonica.

Обширная визейская трансгрессия моря обусловила пик развития зеленых водорослей на Урале, особенно Palaeoberesellaceae и дазикладовых, а благоприятные условия обитания способствовали появлению 6 новых родов в верхнем визе с доминантным положением Koninckopora, Zidella, Einoriella, Calcifolium и разнообразными красными Ungdarella. Здесь нами установлены три водорослевые зоны (табл. 1) преимущественно на основе представителей зеленой микрофлоры.

Серпуховский век отличается от визейского появлением принципиально новых родов зеленых водорослей *Praedonezella*, *Coelosporella*, *Frustulata*, *Borisovella*, *Kulikia*, *Kulikaella*, *Herakella*, но в основном это было время господства *Fasciella kizilia—Ungdarella uralica*, которые являются зональными формами для серпухова на Урале. Регрессивный ход развития серпуховских морей нашел отражение в возрастающей роли красных водорослей, появлении реккурентных форм, сокращении таксономического состава альгофлоры.

С наступлением среднекаменноугольной эпохи господствующее положение среди водорослей занимают донецеллы, являющиеся здесь породообразующими организмами, а также Beresellaceae и разнообразные красные водоросли (*Ungdarella*, *Urtasimella*, *Komia*, Stacheinacea). Полностью исчезают *Calcifolium*, *Koninckopora*, *Frustulata*, *Kulikaella*, *Kulikia*, *Borisovella*.

В раннемосковское время продолжает существовать практически вся ассоциация башкирских водорослей, но доминантами становятся березеллиды.

Наиболее значительные изменения происходят в позднемосковское время, что выражается в появлении географически связанной большой группы зеленых водорослей (Anchicodium, Ivanovia, Eogonophyllum, *Epimastopora*, Macroporella, Gyroporella, Clavaporella, Paradella). Обширная позднемосковская трансгрессия способствовала расселению одинаковых сообществ филлоидных зеленых водорослей на огромных территориях от Испании до Юго-Восточной Азии, Японии и Арктических районов. Филлоидные зеленые водоросли и березеллиды особенно характерны для позднемосковских отложений Южного Урала (между 53 и 60° с. ш.), Ферганской долины, Прикаспийской низменности и Кантаберийских гор Испании. На Урале, к северу от 60° господствовали красные водоросли (Ungdarella, Komia, Pechohia) [5].

Обмеление морских бассейнов в позднем карбоне свело на нет роль березеллид, что послужило своеобразным репером границ среднего и позднего карбона. Доминантами в верхнем карбоне являются синезеленые *Tubiphytes*, зеленые *Globuliferoporella*, *Anchicodium*, *Eugonophyllum*, *Ivanovia*, *Epimastopora*, *Paraepimastopora*, *Pseudoерітаstopora*, в подчиненном количестве присутствуют и многие другие водоросли, которые возникли еще в московское время.

СПИСОК ЛИТЕРАТУРЫ

- Алексеев А.С. Двучленное деление каменноугольной системы // Эволюция биосферы и биоразнообразия. К 70-летию А.Ю. Розанова. М.: Товарищество научных изданий КМК, 2006. С. 527–539.
 Алексеев А.С., Коссовая О.Л., Горева Н.В. Состояние
- Алексеев А.С., Коссовая О.Л., Горева Н.В. Состояние и перспективы совершенствования общей шкалы каменноугольной системы России // Общая стратиграфическая шкала России: состояние и перспективы обустройства: мат-лы Всерос. конф. М.: ГИН РАН, 2013. С. 165–177.
- 3. *Богуш О.И., Иванова Р.М., Лучинина В.А.* Известковые водоросли верхнего фамена и нижнего карбона Урала и Сибири. Новосибирск: Наука, 1990. 202 с.
- Иванова Р.М. К стратиграфии средне- и верхневизейских отложений восточного склона Южного Урала // Каменноугольные отложения восточного склона Южного Урала (Магнитогорский синклинорий). Свердловск: Тр. ИГиГ УНЦ АН СССР. 1973. Вып. 82. С. 18–86.
- 5. *Иванова Р.М.* Биогеография и палеоэкология альгофлоры карбона // Новости палеонтологии и стратиграфии. Новосибирск: СО РАН, филиал ГЕО, 2002. С. 149–157.
- 6. *Иванова Р.М.* Биостратиграфическая зональность карбона Урала по известковым водорослям // Evolution of life on the Earth: мат-лы. III Междунар. симп. Томск: ТГУ, 2005. С. 122–124.
- 7. *Иванова Р.М.* Фузулиниды и водоросли среднего карбона Урала: зональная стратиграфия, палеобиогеография, палеонтология. Екатеринбург: УрО РАН, 2008. 205 с.

116 ИВАНОВА

8. *Иванова Р.М.* Известковые водоросли карбона Урала. Екатеринбург: РИО УрО РАН, 2013. 244 с.

- 9. *Кулагина Е.И.* Граница башкирского и московского ярусов (средний карбон) на Южном Урале в свете эволюции фузулинид // Бюл. МОИП. Отд. геол., 2008. Т. 83, вып. 1, С. 33–44.
- 10. *Кулагина Е.И., Пазухин В.Н., Кочеткова Н.М., Синицына З.А., Кочетова Н.Н.* Стратотипические и опорные разрезы башкирского яруса карбона Южного Урала. Уфа: Гилем, 2001. 139 с.
- 11. *Малахова Н.П.* Стратиграфия нижнекаменноугольных отложений Северного и Среднего Урала по фауне фораминифер. Визейский ярус. Свердловск: Тр. ГГИ УФАН СССР, 1960. Вып. 52. 111 с.
- 12. *Малахова Н.П.* Московский ярус восточного склона Южного Урала // Каменноугольные отложения восточного склона Южного Урала (Магнитогорский синклинорий). Свердловск: Тр. ИГиГ УНЦ АН СССР, 1973. Вып. 82. С. 103–126.
- 13. *Пазухин В.Н., Кулагина Е.И., Николаева С.В. и др.* Серпуховский ярус в разрезе Верхняя Кордаиловка.

- Южный Урал // Стратиграфия. Геологическая корреляция. 2010. Т.18, № 3. С. 45–65.
- 14. Постановление МСК и его постоянных комиссий. Каменноугольная система. СПб.: ВСЕГЕИ, 2003. Вып. 34. 46 с.
- 15. Постановление МСК и его постоянных комиссий. Каменноугольная система. СПб.: ВСЕГЕИ, 2008. Вып. 38. С. 61–68.
- Стратиграфические схемы Урала (докембрий, палеозой). Екатеринбург, 1993. 151 лист.
- 17. *Чувашов Б.И.*, *Шуйский В.П.* Стратиграфические и фациальные комплексы известковых водорослей палеозоя Урала // Известковые водоросли и строматолиты. Систематика, биостратиграфия, фациальный анализ. Новосибирск: Наука, Сиб. отд., 1988. С. 98–125.
- 18. *Chuvashov B.I., Shuysky V.P., Ivanova R.M.* Stratigraphical and facies complexes of the Paleozoic calcareous algae of the Urals // Studies on Fossil Benthic Algae / Ed. E. Barattolo et al. // Boll. Soc. Paleontol. Ital. Spec. 1993. V. 1. P. 93–119.

Рецензент В.В. Черных

Improving stratigraphic schemes Carboniferous Urals by foraminifera and algae

R. M. Ivanova

Institute of Geology and Geochemistry, Urals Branch of RAS

In lower Carboniferous of the Urals have been used two stratigraphical shemes: the first – for the western, the other one for the eastern Urals slopes, though they are very close, or, even identical by the microfauna composition and zonal forms, so the author suggests a single scale for the Urals lower Carboniferous and Russian platform. While separating the Carboniferous deposits of the Urals, besides the foraminifera, the calcareous algae have been used. According to latters 10 biozones have been distinguished. On the algaflora are clearly fixed the boundaries of the systems, departments, stages and substages (seldom—the horizons).

Key words: Carboniferous, the Ural, stratigraphical schemes, zones, the foraminifera, the calcareous algae.