СПОСОБЫ ОБРАЗОВАНИЯ И НАКОПЛЕНИЯ ГРАНИТНЫХ РАСПЛАВОВ

В.Н. Анфилогов
Институт минералогии УрО РАН
456317 Миасс, Челябинской обл.
E-mail: iminchf@ilmeny.ac.ru
Поступила в редакцию: 27 августа 2002 г.

Рассмотрена специфика процессов образования, накопления и перемещения гранитного расплава в условиях ультраметаморфизма (ката zona по А. Баддингтону), в мезозоне и в областях активного базальтового магматизма (эпизона по А. Баддингтону). Показано, что в присутствии флюидной фазы мигматиты могут формироваться путем встречной диффузии компонентов гранитной эвтектики через флюид без привноса компонентов в породу извне. Накоплению больших объемов гранитного расплава способствует специфический механизм движения частично расплавленного материала в зоне антексиса. Гранитные батолиты мезозонов формируются за счет расплава, который образуется в зоне антексиса, образуя с ней единую магматическую систему. Это снимает проблему пространства при образовании батолитов. Образование больших объемов гранитного расплава в областях активного базальтового магматизма происходит в три этапа: автометасоматической переработки базальта, частичного плавления продуктов метасоматоза и перемещения гранитного расплава в верхнюю часть магматической системы.

Ключевые слова: гранит, расплавы, генезис, накопление.

MODEL OF THE ORIGIN AND ACCUMULATION OF THE GRANITIC MELTS

V. N. Anfilogov
Institute of Mineralogy Urals Branch of RAS

The peculiarities of the granitic melt forming, accumulation and transport in the kata zone, mesozone and epizone are discussed. It is shown that migmatites are able to form by head diffusion flows of the components of the granitic eutectic through the fluid. There is no the addition of these components to the rock from outside in this case. The specific mechanism of moving of the partially melted substance is promoted to accumulation of the big volume of the granitic melt in the anatexis zone. Granitic batholites of mesozones are formed from the melt, which is arised in anatexis zone. Batholites of mesozone and zone of the anatexis are formed the united magmatic system. There is no the problem of the volume for granite melt in this case. The formation of big volume of the granitic melt in the areas of the active basaltic volcanism is arised by three steps: autometamorphic transformation of the basalt, partial melting of the metasomatic products and ascent of melt to the upper part of the magmatic system.

Key words: granit, melts, origin, akkumulation.

Рассмотрена специфика процессов образования, накопления и перемещения гранитного расплава в условиях ультраметаморфизма (ката zona по А. Баддингтону), в мезозоне и в областях активного базальтового магматизма (эпизона по А. Баддингтону). Показано, что в присутствии флюидной фазы, образование расплава не требует непосредственного соприкосновения зерен кварца и полевых шпатов, и мигматиты могут формироваться путем встречной диффузии компонентов гранитной эвтектики через флюид без привноса компонентов в породу извне. Переход от стадии мигматитов к накоплению больших объемов гранитного расплава также не связан с метасоматозом и обусловлен специфическим механизмом движения
частично расплавленного материала в условиях, когда, вследствие образования гранитогнейсовых куполов и гранитных диапиров, зона анахесиса становится открытой системой и гранитный расплав постепенно выталкивается из нее, скапливаясь в центральной части куполов. Гранитные батолиты мезозойны формируются за счет расплава, который образуется в катахозе. При этом зона анахесиса и область накопления расплава в мезозое образуют единый магмо-динамическую систему. Заполнение пространства при формировании гранитов мезозойны происходит постепенно. Необходимый для этого объем освобождается путем опускания столба пород, залегающих ниже зоны анахесиса и компенсируется удалением образующегося в ней расплава. Образование больших объемов гранитного расплава в областях активного базальтового магматизма происходит в три этапа: автотемпаративной переработки базальтов, частичного плавления продуктов метасоматоза и перемещения гранитного расплава в верхнюю часть магматической системы.

В настоящее время большинство исследователей считают, что граниты являются магматическими породами, образованными при кристаллизации эндэкстического или близкого к эндэкстическому расплава. Как и в случае базальтовых расплавов, состав которых также близок к эндэкстическому, при формировании гранитов должна существовать магматическая система, состоящая из зоны генерации расплава, магмовода, по которому гранитный расплав перемещается из зоны генерации вверх и магматических камер, где происходит его накопление и кристаллизация. Тем не менее, если для базальта механизм образования расплава способ его перемещения из зоны генерации в промежуточные магматические камеры и эволюция в процессе кристаллизации достаточно понятны, то для гранита эта проблема в таком плане нигде не ставилась.

В отличие от базальта процесс образования гранита оказывается разорванным на части, каждая из которых изучается самостоятельно и никто до сих пор не сделал попытки связать их в рамках единой магматической системы. В настоящее время детально изучены процессы генезиса в зонах ультраметаморфизма, где выделяются гигантские объемы гранитного расплава и, в то же время, мы не можем найти источник расплавов для формирования гранитных батолитов в мезозое. Большинство исследователей справедливо отвергли идею метасоматической трансформации, но вместо этого тут же появилась гипотеза образования гранита путем магматического замещения, в которой до сих пор нет разумного способа его реализации. Наконец, мы до сих пор не в состоянии объяснить механизм накопления гигантских объемов кислых расплавов в эпигене и образование контрастных базальт-риолитовых формаций в зонах объединения базальтов и риолитов соизмеримы, а породы промежуточного между базальтом и риолитом состава, практически, отсутствуют.

В настоящей работе мы попытаемся рассмотреть образование гранитного расплава, его перемещение по магмоводу и формирование гранитных массивов, как процесс, протекающий в единой магматической системе, представляющей собой вертикальную тепловую колонну, в основании которой находится зона генерации расплава, а в верхней части — магматические камеры. Основное внимание мы уделим специфике процессов плавления вещества в зонах генерации и механизму накопления больших объемов гранитного расплава.

Генерация гранитного расплава в зонах ультраметаморфизма

В отличие от базальтов, для которых зона генерации расплава находится на глубине 60—100 км и поэтому никогда не будет доступна для наблюдения, для гранитов мы имеем многочисленные примеры прекрасно обозначенных зон генерации, которые выходят на поверхность в областях регионального метаморфизма. Основные особенности строения этих зон детально описаны в классических работах [Судовиков, 1964; Менерт, 1971; Раген, 1979].

Одним из наиболее сложных и нерешенных вопросов в проблеме генерации метаморфических пород и образовании агатохондов гранитов является вопрос о роли метасоматоза в изменении химического состава субстрата и приближении его к составу гранита. С уверенностью можно сказать, что состав мигматитов и гранитов существенно отличается от среднего состава пород, за счет, или в среде которых, образуются мигматы и граниты [Судовиков, 1964; Махлаев, 1987]. В то же время, исходный состав пород в процессе прогрессивного метаморфизма остается практически постоянным, вплоть до температуры, при которой начинают появ-
ляться мигматитовые образования [Махлаев, 1987]. В связи с этим возникает вопрос: на какой стадии метаморфизма начинают проявляться метасоматические процессы, что является источником компонентов, которые привносятся в породу в процессе ее гранитизации и где находится источник флюида, с помощью которого осуществляется этот процесс.

Нам представляется, что в действительности существенного привноса компонентов извне при гранитизации не происходит и ответы на эти вопросы можно найти, если учсть специфический механизм процесса плавления твердых энтелектуальных смесей в присутствии флюида, открытый и изученный М. Эпельбаумом и М. Боголевовым [Эпельбаум и др., 1982; Боголевов, Эпельбаум, 1982]. Они установили, что в присутствии флюида гранулированный расплав возникает не только на контакте зерен кварца и желатинового полевого шпата, но и на их поверхности, когда зерна этих минералов удалены друг от друга. Это объясняется тем, что в системе, состоящей из зерен минералов, содержащих компоненты энтелектики, возникают диффузионные пороги, несущие эти компоненты, и расплав может возникать в точке встречи этих потоков. Мы показали, что, при перегреве системы выше температуры плавления энтелектики на 100° С, он может конденсироваться непосредственно из флюида [Пуртов и др., 2002]. При таком механизме образования расплава мигматиты будут возникать в тех участках гнейсов или кристаллического сланца, которые обогащены кварцем или полевыми шпатами. При благоприятных условиях расплав может конденсироваться в трещинах или выживать в них под действием нагрузки. Это позволяет объяснить большое разнообразие текстурных типов мигматитов, которое мы видим в зонах мигматизации. Процесс этот будет происходить изохимически, за счет диффузионного перераспределения компонентов внутри толщи метаморфических пород. На возможность изохимического, в пределах толщи метаморфических пород, процесса образования мигматитов указывал К. Менгер [Менгер, 1971], который показал, что суммирование составов гранитного материала и меланократовой остаточной части породы дает состав, аналогичный составу породы до ее мигматизации.

Изложенный выше механизм образования мигматитов, естественно, не исключает возможности метасоматического преобразования вещества за счет внешних, по отношению к данному объему породы, флюидных потоков вещества. В связи с этим возникает вопрос об источнике флюида в зонах антейкисис. Ответить на него можно сравнивая особенности метаморфизма смешанных гранулированных и мигматитовых блоков, как это сделал Б. Лутц для Анабарского щита [Лутц, 1974].

Далее будем исходить из трех достаточно очевидных условий: 1. Зона гранулирового метаморфизма находится ниже амфиболитовой зоны. 2. Высокая температура в зоне гранулирового метаморфизма обеспечивается тепловым потоком, поступающим в нее из мантии. 3. Мантия не содержит воды, необходимой для получения минеральных ассоциаций амфиболитовой фации, что подтверждается стабильностью состава базальтов, выплавляемых из вещества мантии, которая сохраняется более 2,5 млрд лет. Это позволяет сделать следующий вывод: отсутствие флюидных потоков в гранулировой зоне в и наличие их в амфиболитовой зоне свидетельствует о том, что флюидные потоки закрываются на границе между этими зонами и источником флюида является вода, которая выделяется из минералов в процессе гранулирового метаморфизма. Вместе с водой во флюид переходят шелочи и кремнезем, которые в условиях более низких температур амфиболитовой фации способны произвести кремне-шелочную метасоматоз, способствующий гранитизации пород. Это хорошо согласуется с зависимостью концентраций шелочек и SiO2 от температуры [Пуртов, 2002] (рис.1).

Образование мигматитов является первой стадией процесса гранитизации в зонах ультра-метаморфизма. На второй стадии происходит обособление гранитного расплава и его накопление непосредственно в зоне генерации. Факт образования в зонах ультраметаморфизма концентрических по составу, по отношению к вмещающим породам, крупных тел гранита, является одним из главных аргументов в пользу метасоматического преобразования вещества, предшествовавшего плавлению. Существует, однако, другая точка зрения, высказанная Эскольд [Ратен, 1979]. Он считает, что гранитный расплав способен оттаять из породы, скапливаться в трещинах, выдавливаться, перемещаться на достаточно большие расстояния и образовывать крупные скопления батолитового размера. Если к этому добавить причину, объясняющую движение расплава в определенном направлении,
Рис. 1. Зависимость концентраций Si, Na+K, и Al в растворе от температуры при взаимодействии гранита с водой. Цифры у кривых — давление, кбар [Пуртов, 2002].

тоочка зрения Эскола будет выглядеть предпочтительней варианта, в котором главная роль отводится метасоматозу.

Для того, чтобы понять каким образом происходит переход от стадии мигматитов к стадии накопления расплава, необходимо рассмотреть состояние вещества в зоне генерации апатикового гранитного расплава. Характерной особенностью этих зон является развитие многоэтапной изоклинной складчатости, у которой осевые поверхности складок субпараллельны сланцеватости, что свидетельствует о горизонтальном, близком к послойному, течению материала в зонах гранитизации [Грабкин, 1965; Добжанецкая, 1989]. Обычно образование этой дистармоничной складчатости связано с надвиговыми движениями параллельными осевым поверхностям складок [Добжанецкая, 1989]. Очевидно, что это не единственный вариант объяснения специфического характера деформации пород в зоне антексида. Экспериментальное моделирование послойного течения материала, в котором слои имеют различную вязкость, выполненное Ю. Миллером [Миллер, 1982], показало, что в открытых системах такие деформации возникают в процессе течения, вызванного давлением нагрузки, которое действует перпендикулярно к направлению течения (рис. 2).

Типичными крупными структурами в зонах генерации гранитного расплава являются гранито-гнейсовые купола. Примеры таких структур описаны в работе [Грабкин, 1965]. Их характерной особенностью является возрастание доли гранитного материала от периферии к центру купола. Одновременно происходит увеличение степени деформации вещества, которое выражается в развитии мелкой складчатости. О. Грабкин считает, что причиной этого является формирование в центре купола гранитного диапира [Грабкин, 1965]. Он установил, что плотность город в центре купола равна 2,5-2,7 г/см³. Вышележащие породы имеют плотность 2,8-2,9 г/см³. В такой системе на границе раздела пород с разной плотностью неизбежно возникают области гравитационной неустойчивости, которые проявляются в форме куполов, перерастающих в диапиров [Теркот, Шуберт, 1985]. В результате этого зона антексида становится открытой и если материал в гнейсовых куполах насыщен расплавом, то перемещение его к центру купола и выдавливание вверх в виде диапира создают условия, обеспечивающие послойное течение материала в направлении купола и накопление расплава в его центральной части.
Таким образом, специфический механизм плавления эвтектических композиций в присутствии флюида и возможность выделяния гранитного расплава из зоны генерации вверх создают условия для образования анатектических гранитов без привноса компонентов в зону генерации и накопления больших объемов расплава путем его механического перемещения в области гравитационной неустойчивости. Замечено, что образованные таким способом тела гранитов будут иметь все признаки, которые рассматриваются как доказательства их образования путем магматического замещения или гранитизации.

Механизм образования гранитных батолитов

Изложеный выше механизм выплавления и накопления анатектических гранитов предполагает, что зона генерации анатектических расплавов представляет собой открытую систему, из которой расплав может выделяться в форме гранитных диапиров. В то же время, в мезоzone, расположенной на 6–7 км выше зоны анатексиса, формируются гигантские тела перемещенных гранитных батолитов, сложенных гранитами s-типа, генезис которых до сих пор остается неясным. Нам представляется разумным связать образование этих тел с зонами ана-текисса и предположить, что мезоzone в большинстве случаев является верхним пределом, до которого поднимается основная масса гранитного расплава из катаэзон, где происходит анатексис. При гигантских площадях, которые занимают области ультраметаморфизма, вертикальный интервал в 5–6 км, отдаляющий мезоzone от катаэзон, не представляет значительным и обычно он оказывается заполненным гранитным материалом в виде послойных инъекций и факелов [Баддington, 1963]. Это приводит к формированию огромных, по зонам площадей, гранитоидных провинций типа Монголо-Забайкальской [Leontiev, 1982] и гигантских батолитов, таких как батолит Берегового хребта на Аляске [Baddington, 1963]. В этих случаях тесная связь и генетическая общность гранитов мезоzone и зоны анатексиса сомнений не вызывает. Значительно сложнее установить ее для плутонов расположенных в пределах палеозойских и мезозойских складчатых поясов. Примеры крупных массивов такого типа мы имеем в Забайкалье, на Алтае, в Казахстане, на Урале и в других складчатых поясах. С вмещающими породами эти массивы имеют частично конкордантные, частично дискордантные взаимоотношения. Контактовое воздействие гранитов на вмещающие породы соответствуют условиям роговообманково-роговиковой фации.

Определенная попытка решить этот вопрос сделана Т. Перкалинной для гранитов Казахстана [Перкалина, 1966]. Она показала, что области гранитного магматизма совпадают с областями, где по геофизическим данным под отложениями протерозоя и нижнего палеозоя залегает древний кристаллический фундамент, сложенный метаморфизованными породами. Породы фундамента рассматриваются Т. Перкалиной как субстрат, из которого в процессе наложенной магматической активизации происходили
Способы образования и накопления гранитных расплавов

ходило выплавление гранитного расплава. Аналогичная ситуация наблюдается на Урале. Крупные массивы гранитов здесь расположены в пределах Восточно-Уральского поднятия, где также имеются блоки докембрийского фундамента. Обоснованность такого подхода подтверждается тем, что гранитный магматизм на этих территориях повторяется многократно, начиная с докембрия до мезозоя.

При решении вопросов генезиса крупных гранитных массивов мезозоя возникает две проблемы: где происходит выплавление расплава и каким образом происходит заполнение пространства, занятого гранитом. Традиционно считают, что генерация гранитного расплава происходит при температуре близкой к температуре тройного минимума в системе NaAlSi₃O₈ – CaAl₂Si₂O₈ – SiO₂ – H₂O и поэтому насыщенный водой расплав не может подниматься на сколько-нибудь значительные расстояния. В действительности температура в области генерации гранитного расплава намного выше температуры плавления гранита. По данным, полученным по расплавным включениям, в гранулитовой фазе она равна 870–900°С, а для анатектических гранитов и гранитных пегматитов достигает 840°С [Томиленко, Чупин, 1983]. При таких температурах гранитный расплав может перемещаться вверх на расстояние нескольких километров. Следует также иметь в виду, что в зонах ультраосновного метаморфизма при общем давлении 6–8 кбар содержание воды в гранитном расплаве в условиях гранулитовой фазы равно 0,4–0,6 мас. % [Томиленко, Чупин, 1983], что соответствует минимальной температуре плавления гранита около 900°С [Рябчиков, 1975]. В гранитах амфиболитовой фазы содержание воды в расплаве составляет

Рис. 3. Кривые плавления (солидуса) альбитов как функция состава пара H₂O/H₂O + CO₂ [Кадик, Элгер, 1976].
Механизм образования и накопления кислых расплавов при формировании базальт-риолитовых и габбро-гранитных магматических формаций

В тексто-магматических обстановках активных континентальных окраин и островных дуг широкое развитие имеют базальт-риолитовые и габбро-гранитные формации, в которых граниты и риолиты несют в себе признаков участия в их образовании сиалического кислого материала. Более того, их геохимия свидетельствует о том, что они, также как и базалты, образованы по мантийному субстрату. В качестве примера таких формаций можно привести риолиты плато Параи в Бразилии [Bielleny et al., 1986]. Гигантские объемы кислого магматического материала извергаются и отлагаются на поверхности в виде инских образований. Как справедливо отметил В. Жариков, попытки объяснить образование кислых расплавов в этих формациях путем кристаллизационной дифференциации базальтового расплава несостоятельны «вследствие противоречий между широким распространением гранитов и крайне ограниченным количеством кремнекислотного материала (гранитного), который можно было бы получить многократной и сложной сепарацией из мантийных перidotитов» [Жариков, 1986]. Нет смысла говорить и о возможности получения таких объемов расплавов путем контактного плавления кислых метаморфизических пород. Этот процесс, несомненно, имеет место, но, благодаря низкой теплопроводности пород и низкому теплосодержанию базальтово-
го расплава, масштабы его весьма ограничены. Следовательно, в природе существует специфический механизм, трансформирующий по- роды основного состава в кислые, который действует в тектоно-магматических обстановках активных континентальных окраин и островных дуг и который, вероятно, работает при излиянии океанических базальтов, траппов и континентальных плато-базальтов.

Найболее существенным отличием базальтового магматизма в обстановке активных континентальных окраин от процесса излияния базальтов в океанических условиях и плато-базальтов континентов является активная роль воды, которая выделяется при дегидратации водных минералов и циркулирует в пределах тепловой колонны вокруг магмоводов и промежуточных магматических камер. Эти процессы должны идти и в океанических условиях и при извержении континентальных плато-базальтов, но при интенсивном и непрерывном поступлении базальтового расплава он не успевает насытиться водой и поэтому проявления кислого магматизма здесь крайне ограничены. Кислый магматизм развивается в магматических системах в периоды длительных перерывов между излияниями базальтового расплава, во время которых происходит интенсивная метасоматическая переработка базальта и подготовка субстрата, из которого затем выделяется гранитный расплав.

В связи с тем, что в контрастных базальто-риолитовых и габбро-гранитных формациях отсутствуют признаки участия в образовании гранитов и риолитов кислого материала коры, механизм переработки базальта должен иметь автометасоматический характер. Удовлетворяющую этим условия модель можно построить на основе экспериментальных данных Н. Горбачева с соавторами [Горбачев и др., 1994]. Н. Горбачев и др. указывали, что коэффициенты распределения Na, K, SiO₂ и Al₂O₃ между флюидом и расплавом базальта при температурах 1100–1300°C при изменении давления от 10 до 1 кбар уменьшаются для K₂O от 50 до 0,14, для Na₂O от 10 до 0,07 и для SiO₂ от 0,9 до 0,05 [Горбачев и др., 1994] (рис. 5). Это означает, что флюид, равновесный с расплавом на глубине, при высоких давлениях, способен осуществлять щелочной и кремнекислотный метасоматоз базальта при подъеме вверх и понижении давления. Процесс метасоматического преобразования базальта и образования гранитного расплава изучен В. Пуртовым и др. [Пуртов и др., 2002]. Установлено, что при температурах 600–800°C, при взаимодействии базальта с растворами NaCl + KCl происходит замещение плагиоклаза щелочными полевыми шпатами, а при содержании в растворе HCl больше 0,5 моля / литр появляется кварц. При температурах выше 690°C и давления 1 кбар появляется гранитный расплав. Так же как в опытных М. Эспельбаум и М. Боголепова [Эспельбаум и др., 1982; Боголепов, Эспельбаум, 1988], расплав образуется путем диффузионного обмена компонентами между зернами кварца и полевого шпата. Благоприятные условия для такого обмена создаются в порах, которые образуются в шихте базальта, и поэтому в них происходит накопление гранитного расплава в виде сферических капелек не связанных с поверхностью пор (рис. 5).

Рис. 5. Зависимость коэффициента распределения петрогенных элементов между базальтовым расплавом и флюидом от давления при T = 1100°C.

1 – K₂O, 2 – Na₂O, 3 – SiO₂, 4 – CaO, 5 – MgO, 6 – TiO₂, 7 – Al₂O₃, 8 – FeO [Горбачев и др., 1994].
Степень автометасоматической переработки базальтового субстрата не может быть достаточно высокой для того, чтобы после нее исходный базальт заметно приблился по составу к граниту. В этих условиях большое количество расплава может накопиться только в том случае, если переработка затронула объем базальта на два порядка большей объема выплавленного из него гранита. При этом, небольшие порции расплава, которые образуются в каждом элементарном объеме метасоматически измененного базальта, должны отделиться от субстрата и накопиться в магматической камере выше зоны генерации расплава. В связи с этим возникает проблема перемещения насыщенного водой гранитного расплава вверх на расстояние 3–5 км. Решается она также как для анатектических гранитов. Реальные температуры гранитного расплава, определенные для гиббситолитовых гранитов по гомогенизации расплавных включений вплоть 1100–1200°C [Соболев, 2001]. При таком перегреве проблемы движения расплава вверх не существует. Заметим, что перегрев гранитного расплава позволяет решить также проблему гигантских и образовании специфических туфов, не привлекая к процессу спекания гипотетические «летучие» компоненты. Имея температуру 1100–1200°C пепловый материал будет спекаться за счет собственного тепла.

В связи с установленной по расплавным включениям высокой температурой генерации гранитных расплавов, возникает проблема сохранения состава расплава в пределах тройной кварц-альбит-ортоклазовой температурной минимумы. Это обеспечивается подвижным поведением щелочей. При постоянной их концентрации во флюиде состав гранитного расплава, при его перегреве выше температуры ликвидуса, не может самопроизвольно смешаться в сторону более основных композиций. При этом отношение концентраций Na₂O/K₂O может варьировать от 4:1 до 1:1 [Пуртов и др., 1996; Пуртов и др., 2002].

Типичным примером габбро-гранитных комплексов является Кассельский массив, расположенный в Магнитогорском прогибе в 50 км севернее города Магнитогорска (рис. 6). Массив представляет собой изометричную куполообразную структуру диаметром около 18 км. Центральная часть структуры занята породами карбона, представленными в различной степени измененными диабазовыми порфировыми. Нижняя, не вскрытая эрозией, часть, сложена пла-

Рис. 6. Схематическая геологическая карта Кассельского габбро-гранитного массива (Южный Урал).
1 — четвертичные отложения, 2 — вмещающие вулканиты основного состава, 3 — крупнозернистые граниты Гумбейского массива, 4 — лейкократовье граниты, залегающие в кровле массива габбро, 5 — альбит-амфиболовые породы роговиковой фации, 6 — платноэллат-амфиболовые породы роговиковой фации с калиевым полевым шпатом, 7 — слабо измененные диабазовые порфириты кровли, 8 — выходы пироксен-платноэллатовых габбро, 9 — диабаз-гранитные брекчии в кровле массива, 10 — выходы щелочных гранитов.
Способы образования и накопления гранитных расплавов

Гиоклаз-пироксеновыми габбро. Выходы габбро фиксируются в наиболее пониженных частях рельефа. Габброндовый состав основной части массива устанавливается по гравиметрическим данным. В южной части массива на поверхности обнаружены кулисообразные тела лейкократовых гранитов, ориентированные параллельно контактту массива. Наиболее крупное из них имеет длину 15 и ширину 1.5 км (рис. 6). Мощность тела не превышает 50 м. Контакты гранита с габбро четкие, но без закалочных явлений и гибридизма.

Есть все основания утверждать, что гранитный расплав находился в общей с габброндовой магматической камерой, занимая ее верхнюю часть. Это, в свою очередь, позволяет сделать, на первый взгляд, невероятное предположение о том, что транспортером гранитного расплава был расплав основного состава. Объяснить это явление можно следующим образом. Небольшие порции гранитного расплава, образующиеся в процессе плавления метасоматически измененных пород основного состава могут захватываться расплавом габбро и, обладая кинетической несмесимостью с ним [Анфилютов, Быков, 1998], подниматься и накапливаться в верхней части магматической камеры. Аналогичный механизм образования гранофировых силлов был предложен нами для Скаргарабской интрузии [Анфилютов, Быков, 1998]. При интенсивной метасоматической переработке субстрата основного состава гранитный расплав может образовывать собственные структуры, которые будут подниматься вверх до уровня, на котором плотность расплава будет равна плотности вмещающих пород.

Таким образом, гранитообразование в природе реализуется в двух, принципиально отличных, геодинамических обстановках: в областях, где мантийные тепловые потоки вызывают плавление кристаллического фундамента, сложенного преимущественно метаморфизованными осадочными породами и в активных континентальных окраинах и зреющих острогих дугах, где гранитные расплавы образуются по породам, возникшим при частичном плавлении вещества мантии.

Список литературы


Грабовский В.В. К вопросу о внутреннем строении и условиях формирования Нижне-Темптонского купола на Алданском щите // Вестник МГУ, серия IV, геология, 1965. С. 36–44.


Кадик А.А., Эггер Л.Х. Режим воды и упругие свойства при образовании и дегазации кислых магм // Геохимия. 1976. № 8. С. 1167–1175.

Луцик В.Г. Петрогенез глубинных зон континентальной коры. М.: Наука, 1974. 304 с.


Миллер Ю.В. Послойное и субблое течение пород и его роль в структурообразовании // Геохимия. 1982. № 6. С. 88–96.


Пуртов В.К. Высокотемпературный метаматиз- и гранатизация пород базальтового состава в хлоридных растворах. Миасс: УрО РАН, 2002. 140 с.


Соболев Р.Н. Оценка температуры внедрения газовой магмы в камеру кристаллизации (на примере массива Эльджурту, Северный Кавказ) // Доклады РАН. 2001. Т. 377. № 2. С. 244–246.

Рецензент Г.Б. Ферштаттер